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Nesting statistics in theO.n/ loop model on random maps
of arbitrary topologies

Gaëtan Borot and Elba Garcia-Failde

Abstract. We pursue the analysis of nesting statistics in theO.n/ loop model on random maps,
initiated for maps with the topology of disks and cylinders by Borot, Bouttier and Duplantier
(2016), here for arbitrary topologies. For this purpose, we rely on the topological recursion
results by Borot, Eynard and Orantin (2011, 2015) for the enumeration of maps in the O.n/
model. We characterize the generating series of maps of genus g with k boundaries and k0

marked points which realize a fixed nesting graph. These generating series are amenable to
explicit computations in the loop model with bending energy on triangulations, and we charac-
terize their behavior at criticality in the dense and in the dilute phase.
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1. Introduction

The enumeration of maps, which are models for discretized surfaces, developed ini-
tially from the work of Tutte [58–60]. The discovery of matrix model techniques [10]
and the development of bijective techniques based on coding by decorated trees [11,
54] led in the past 30 years to a wealth of results. An important motivation comes
from the conjecture that the geometry of large random maps is universal, i.e., there
should exist ensembles of random metric spaces depending on a small set of data (like
the central charge and a symmetry group attached to the problem) which describe
the continuum limit of random maps. Two-dimensional quantum gravity aims at the
description of these random continuum objects and physical processes on them, and
the universal theory which should underly is Liouville quantum gravity possibly cou-
pled to a conformal field theory [14, 32, 36]. Understanding rigorously the emergent
fractal geometry of such limit objects is nowadays a major problem in mathematical
physics. Another important problem is to establish the convergence of random maps
towards such limit objects. Solving various problems of map enumeration is often
instrumental in this program, as it provides useful probabilistic estimates.

As of now, the geometry of large random planar maps with faces of bounded
degrees (e.g., quadrangulations) is fairly well understood. In particular, their scaling
limit is the Brownian map [39, 40, 43, 44], the complete proof of convergence in the
Gromov–Hausdorff sense being obtained in [40, 44]. This universality class is often
called in physics that of “pure gravity”. Recent progress generalized part of this under-
standing to planar maps containing faces whose degrees are drawn from a heavy tail
distribution. In particular, the limiting object is the so-called ˛-stable map, which can
be coded in terms of stable processes, whose parameter ˛ is related to the power law
decay of the degree distribution [42].

The next class of interesting models concerns random maps equipped with a sta-
tistical physics model, like percolation [35], the Ising model [9, 34], or the Q-Potts
model [12, 25, 61], and so on. To make the distinction explicit, maps without a sta-
tistical physics model will be called usual maps. It is well known, at least on fixed
lattices [1, 29, 52, 53, 57], that the Q-state Potts model can be reformulated as a fully
packed loop model with a fugacity

p
Q per loop, for random maps this equivalence

is explained in detail in [4]. The O.n/ model also admits a famous representation
in terms of loops [16, 52] with n the fugacity per loop. The interesting feature of
the O.n/ model is that it gives rise to two universality classes which depend contin-
uously on n, called dense or dilute in respect to the behavior of macroscopic loops,
as can be detected at the level of critical exponents [20, 21, 30, 31, 37, 38, 50–52]. The
famous KPZ (Knizhnik–Polyakov–Zamolodchikov) relations [36] (see also [13, 15])
relate, at least from the physics point of view, the critical exponents of these models
on a fixed regular lattice, with their corresponding critical exponent on random planar
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maps, as was repeatedly checked for a series of models [3,18,20,21,34,36,37]. These
exponents for random planar maps are summarized in [3, Figure 4].

It is widely believed that after a Riemann conformal map to a given planar domain,
the proper conformal structure for the continuum limit of random planar maps weight-
ed by the partition functions of various statistical models is described by the Liouville
theory of quantum gravity (see, e.g., the reviews [14, 19, 32, 41, 49]). In the particu-
lar case of pure random planar maps, the universal metric structure of the Brownian
map [40, 41, 44] has very recently been identified with that directly constructed from
Liouville quantum gravity [45–47]. After this Riemann conformal mapping, the con-
figuration of critical O.n/ loops is believed to be described in the continuous limit
by the so-called conformal loop ensemble [55, 56], denoted by CLE� and depending
on a continuous index � 2 .8

3
; 8/, with the correspondence n D 2 cos �.1 � 4

�
/ for

n 2 .0; 2� [17, 18, 33]. Yet, little is known on the metric properties of large random
maps weighted by an O.n/ model, even from a physical point of view.

Most of the works described above are restricted to planar maps. In [3], one of
the authors jointly with Bouttier and Duplantier investigated the nesting properties of
loops in maps with the topology of a disk or a cylinder weighted by an O.n/ model,
and showed them to be in perfect agreement with the known nesting properties of
CLE� [48] after taking into account a suitable version of the KPZ relations [22]. In this
article, we push this analysis forward and investigate rigorously the nesting properties
of maps of any topology weighted by an O.n/ model. This includes as a special case
the description of the critical behavior of maps without loops (i.e., in the class of pure
gravity) having possibly marked points, microscopic and macroscopic boundaries.
This generalization is non-trivial as the combinatorics of maps with several bound-
aries, marked points, and arbitrary genus, is much more involved than in the cases of
disks and cylinders. Our approach is based on analytic combinatorics, and relies on
two main ingredients:

(1) the substitution approach developed in [5, 6] for planar maps;

(2) the topological recursion of [8,27] to reduce by a universal algorithm the enu-
meration of maps – possibly carrying an O.n/ loop model – of any topology
to the enumeration of disks and cylinders.

Obtaining the desired asymptotics for generating series of maps subjected to various
constraints is then a matter of careful analysis of singularities.

1.1. Outline and main results

1.1.1. Combinatorics of maps and their nesting. We introduce in detail the O.n/
loop model and the notion of nesting graph of a map in Section 2. To present infor-
mally our findings, let us say that the primary nesting graph .�0; ?/ of a map M has
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vertices corresponding to the connected components of the complement of the loops,
and edges between vertices which correspond to connected components adjacent to
the same loop. Each vertex carries a genus (of the connected component it refers to)
and may carry marks – here denoted by ? – remembering to which connected com-
ponents the marked points or boundaries of M belong to. The nesting graph .�; ?/
is obtained from �0 by collapsing all genus 0 univalent vertices which do not carry
a mark, and collapsing any maximal sequence of P consecutive edges with at least
one of its endpoints being a genus 0 unmarked vertex to a single edge remember-
ing P , which we call an arm of length P . These two steps are repeated until one
of them leaves the graph unchanged. The collection P of arm lengths is convention-
ally not included in the data of � . In other words, every edge in �0 refers to a loop
in M, and an arm of length P in � represents P consecutive loops disposed along
a cylindric part of M which “separate” the marks. Precise definitions are provided in
Section 2.1.2.

The main goal of the article is to study maps in the O.n/ loop model realizing
a fixed nesting graph. Their generating series are typically denoted by script letters FFF .
We will also encounter generating series of maps in the O.n/ model which are not
keeping track of nestings, and denoted by F. We review the substitution approach
of [6] in Section 2.2, describing disks with an O.n/ loop model as usual maps whose
faces can also be disks with an O.n/ loop model. Generically, generating series of
usual maps whose faces can also be disks with an O.n/ loop model will be denoted
by F . We may impose geometric constraints on the maps under consideration, by
fixing the genus g, the number k0 of marked points, the number of boundaries k
and their respective perimeters .`i /kiD1, the volume (i.e., the total number of ver-
tices) V , and maybe the arm lengths .P.e//e. This is conveniently handled at the
level of generating series by including extra Boltzmann weights, respectively uV ,Q
i x
�.`iC1/
i , and

Q
e s.e/P.e/. The precise definitions of these generating series and

the easy combinatorial relations between them are described in Section 2. In particu-
lar, the basic formula for the generating series of maps with a fixed nesting graph is
Proposition 2.2.

In Section 3, we review the analytic properties of these generating series, i.e., in
which sense the Boltzmann weights can be considered as nonnegative real-valued
parameters instead of formal parameters, and their characterization by functional
equations already known in the literature. We state the topological recursion formula
for F.g;k/ and F .g;k/ from [8] which will be our second basic formula, and explain
how it can be used in practice. We also explain in Section 3.5 how the addition of
extra marked points can easily be handled at the level of generating series. These
results are valid in the general O.n/ loop model, where loops are allowed to cross
faces of any degree.



Nesting statistics in the O.n/ loop model on random maps of arbitrary topologies 203

In Section 4, we specialize these results to the O.n/ loop model on triangulations
with bending energy ˛. It also depends on the parameter h per triangle visited by
a loop, and g per empty triangle. This model is the simplest one which is amenable to
an explicit solution in terms of theta functions, and still contains the dense and dilute
universality classes which are specific to loop models. At this point, it is very useful to
introduce the parameter b 2 .0; 1

2
/ such that nD 2 cos.�b/. We review the expression

for the generating series of disks and cylinders (Section 4.2), which are the non-trivial
initial data allowing to reach higher topologies. We also transform (Sections 4.3–4.5)
the topological recursion formula for F.g;k/ into a more explicit sum over trivalent
graphs, which will be suited for later analysis.

1.1.2. Critical behavior. Following [5], we review in Section 5 the phase diagram of
this bending energy model. The properties of the special functions, and some details
necessary to obtain this phase diagram as well as for later use, are collected in Appen-
dices A–D which are mostly taken from [3]. For fixed n 2 .0; 2/, ˛ not too large and
the vertex weight u D 1, it features in the .g; h/ plane a non-generic critical line,
beyond which the generating series of pointed disks are divergent. As is well known,
the radius of convergence is actually the same for generating series of maps of any
topology. The critical exponents in the interior (resp. at the tip) of the non-generic
critical line pertain to the dense (resp. dilute) universality class. Beyond this point,
the critical line continues to a generic line, i.e., corresponding to the universality class
of pure gravity. We focus on the non-generic critical line as it is specific to the loop
models. If .g; h/ is chosen on the non-generic critical line but we keep the vertex
weight u < 1, the model remains off-critical. The distance to criticality is governed by
.1� u/! 0. At the level of the explicit solution in terms of theta functions, approach-
ing criticality corresponds to a trigonometric limit with a modulus scaling like

q �
h1 � u
q�

ic
; (1.1)

with an exponent distinguishing between the dense and the dilute phase

c D

´
1
1�b

; dense;

1; dilute:

It is related to the famous string susceptibility exponent str by c D �strb. All other
exponents can be expressed in terms of b and c, and we will give expressions valid
for both universality classes using

d D

´
1; dense;

�1; dilute:
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The remainder of the text, and the main contribution of this article, is devoted to
the analysis of singularities of the generating series under consideration for .g; h/
on the non-generic critical line, in the limit u ! 1, here conveniently traded for
q ! 0 according to (1.1). This is done in several steps in Sections 5–6 summarized
below. We then perform in Section 7 a saddle point analysis to extract the asymptotics
of the desired generating series of maps with fixed volume V ! 1. The analysis
reveals two interesting regimes for boundary perimeters: either we impose the bound-
ary to be

• microscopic (“small”), i.e., `i finite,

• or macroscopic (“large”), here corresponding to `iV
c
2 for fixed `i .

We argue in Section 7.3 that, as far as critical exponents for asymptotics are con-
cerned, marked points behave like small boundaries. So, we can present here our
results in a simpler form in absence of marked points.

Notation 1.1. We use F �� G to indicate that there exists a constant C > 0 such that
F � CG in the asymptotic regime under study.

Our first main result (Theorem 7.1) concerns generating series of maps with fixed
nesting graph.

Theorem 1.2. Assume 2g� 2C k > 0. Let kL be the number of macroscopic bound-
aries, kS the number of microscopic boundaries, and k D kL C kS. Let also k.0;2/S
be the number of microscopic boundaries and marked points that belong to a genus 0
connected component of the complement of all loops which does not contain any other
mark and was adjacent to exactly one loop. The generating series of connected maps
of genus g realizing the nesting graph .�; ?/ behaves as�

uV
kLY
iD1

x
�.`iV

c
2
C1
/

i

kLCkSY
iDkLC1

x
�.`iC1/
i

�
FFF .g;k/Œ�; ?�

�
� V Œ�1Cc..2g�2Ck/.1�d b2 /�

1
4kSC.

1
4�

b
2 /k

.0;2/
S /�

when V !1.

As b 2 .0; 1
2
/, we see that the nesting graphs most likely to occur are those in

which each microscopic mark – either a marked point or a microscopic boundary –
belongs to a genus 0 univalent vertex which does not carry any other mark. This is
exemplified in Figure 1 for maps of genus 0 with 4 microscopic marks. The analog
statement for cylinders can easily be extracted from [3] and is here rederived as The-
orem 7.2.

Our second main result (Theorem 7.3 in Section 7.1) describes the large deviation
function of (large) arm lengths in maps realizing a given nesting graph. It is instructive
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1, 2, 3, 4
V �1Cc.1�db/

1, 2, 3 4
V �1Cc.1�dbC 14�

b
2 /

1, 2 3, 4
V �1Cc.1�db/

1 2, 3 4
V �1Cc.1�dbC 12�b/

1, 2 3 4
V �1Cc.1�dbC 14�

b
2 /

1 2 3 4
V �1Cc.1�dbC 12�b/

1, 2

3

4 V �1Cc.1�dbC 12�b/

1

3

2
4 V �1Cc.1�dbC 34�

3b
2 /

1

2

3

4

V �1Cc.1�dbC1�2b/

1

2 3

4

V �1Cc.1�dbC1�2b/

Figure 1. The possible nesting graphs for planar maps with 4 microscopic boundaries labeled
1, 2, 3, 4 (up to permutations of the labels), and the order of magnitude of the number of maps
realizing them for large volume V . For n2 .0;2/, i.e., b 2 .0; 1

2
/, the greatest order of magnitude

is achieved for the two last graphs in the right column.

to first review the result for cylinders obtained in [3], which is expressed in terms of
the function

J.p/ D sup
s2Œ0; 2n �

°
p ln.s/C arccos

�ns
2

�
� arccos

�n
2

�±
D p ln

�2
n

pp
1C p2

�
C arccot.p/ � arccos

�n
2

�
; (1.2)

plotted in Figure 2. It has the following properties:

• J.p/ � 0 for positive p, and achieves its minimum value 0 at

popt D
n

p
4 � n2

given below.

• J.p/ is strictly convex, and

J 00.p/ D
1

p.p2 C 1/
:

• J.p/ has a slope ln. 2
n
/ when p !1.

• When p ! 0, we have

J.p/ D arcsin
�n
2

�
C p ln

�2p
n

�
CO.p/:
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p
4321

0:5

1:0

1:5

J.p/

Figure 2. The function J.p/: blue for nD 1, green for nD
p
2 (Ising), and orange for nD

p
3

(3-Potts).

Theorem 1.3. The probability that, in a cylinder with volume V ! 1, the two
boundaries of perimeters .L1; L2/ are separated by P loops admits the following
asymptotics:

P
h
P D

c lnV
�

p
ˇ̌
V; L1 D `1; L2 D `2

i
�
� .lnV /�

1
2V �

c
� J.p/;

P
h
P D

c lnV
2�

p
ˇ̌
V; L1 D `1; L2 D `2V

c
2

i
�
� .lnV /�

1
2V �

c
2� J.p/;

P
h
P D

c lnV
�

p
ˇ̌
V; L1 D `1V

c
2 ; L2 D `2V

c
2

i
�
� V �

c
� p ln. 2n /:

We observe that the typical order of magnitude of the number of separating loops
between the two boundaries is ln V when at least one of them is small, and is finite
when both of them are large. In the first case, more precisely, �|P

c lnV is almost surely
equal to the value popt, at which the large deviation reaches its minimum value zero,
and the fluctuations of P are Gaussian of order

p
lnV due to the quadratic behavior

of J.p/ near p D popt. Here | is a normalization constant depending on the nature
(microscopic or macroscopic) of the boundaries.

In this article, for maps of any topology and any nesting graph, we show (The-
orem 7.3 in Section 7.2) that individual arms have exactly the same behavior. Arm
lengths are asymptotically independent from one another. The analysis of the gener-
ating series of maps with a fixed nesting graph will reveal that the arm boundaries
that lie in the interior of the map, i.e., gluing boundaries (instead of boundaries of the
original map), are typically large. Therefore, for maps with 2g � 2C k > 0, we only
consider arms incident to a small and a large (gluing) boundary, and to two large (glu-
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ing or not) boundaries. For arms incident to a small boundary, the length distribution
has a large deviation function at rate lnV universally given by (1.2). The length of the
other arms has an exponential tail with rate ln. 2

n
/.

Theorem 1.4. Assume 2g � 2C k > 0, fix a nesting graph .�; ?/, and choose which
boundaries are microscopic or macroscopic. Let E.�/ be the set of edges of � , ES

0;2,
the set of edges incident to a genus 0 univalent vertex carrying as only mark one
microscopic boundary. Consider the regime

P.e/ D
c lnV p.e/
|.e/�

; |.e/ D

´
2 if e 2 ES

0;2.�/;

1 otherwise;

where p.e/ may depend on V but remains bounded away from 0, and negligible in
front of ln V , in the sense that p.e/lnV ! 0, if V ! 1. The probability to have arm
lengths P in maps realizing .�; ?/, of volume V with boundary perimeters Li D `i
for the microscopic ones, and Li D `iV

c
2 for the macroscopic ones, with fixed `i > 0,

behaves as

P .g;k/ŒPj�; ?; V;L�
�
�

Y
e2ES

0;2
.�/

.lnV /�
1
2V �

c
2� J Œp.e/� �

Y
e2E.�/nES

0;2
.�/

V �
c
� p.e/ ln. 2n /:

The Gaussian fluctuations of arm lengths at order
p

lnV around cpopt
|.e/� ln V are

precisely described in Corollary 7.5. If CLE� were properly defined on Riemann sur-
faces of any topology, Theorem 1.4 could be converted into a prediction of extreme
nestings of any topology for CLE� thanks to the scheme of KPZ transformations
described in [3, Section 7].

1.1.3. Steps of the proofs. The task of Section 5 is to derive, for 2g� 2C k > 0, the
non-generic critical behavior of

• the generating series F .g;k/ of maps whose faces are disk configurations of the
O.n/ model, and

• the generating series F.g;k/ of maps in the O.n/ model,

in presence of an arbitrary fixed number of microscopic and macroscopic boundaries
(Theorem 5.9). Here we work in the canonical ensemble, i.e., considering the gen-
erating series depending on Boltzmann weights u for vertices and xi for boundary
perimeters. When all boundaries are macroscopic, the result easily follows from the
property “commuting with singular limits” of the topological recursion, see, e.g., [24,
Theorem 5.3.2]. The situation is more tricky in presence of microscopic boundaries,
and our analysis in this case is new. Our scheme analysis of the topological recur-
sion is, in fact, more general than the O.n/ model, and it may be of use for other
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problems in enumerative geometry. Concretely, we start from the sum over colored
trivalent graphs for F .g;k/ and F.g;k/ described in Section 4.5. We analyze the criti-
cal behavior of the weights of vertices and of edges in Appendix E, and collect the
result in Section 5.4.1. The difference between F and F only comes from the edge
weights, so both cases can be treated in parallel. Then, we determine in Section 5.5 for
fixed genus g, fixed number of boundaries k, and fixed coloring of the k legs, which
graphs give the leading contribution in the critical regime. This is the most technical
part, the formula for the critical exponent of this leading contribution in Lemma 5.8 is
quite intricate, but we should remember that it does not have a priori a combinatorial
meaning. The quantities which have a meaning are F and F , and they are obtained by
summing all these contributions over the colorings of the legs. We find the final result
for the critical behavior of F and F in Theorem 5.9 is much simpler. This result does
not concern nesting but is interesting per se. It clearly displays the affine dependence
of the critical exponents on the Euler characteristic of the maps.

We proceed in Section 6 to examine the dominant contribution to the critical
behavior of FFF , the generating series for fixed nesting graph .�; ?/. The starting
point is the combinatorial formula of Proposition 3.10, which is an appropriate glue-
ing along the given nesting graph � of vertex weight and edge weights. The vertex
weights are the F ’s for which we have already obtained the critical behavior in The-
orem 5.9. The edge weights are the generating series F.2/s for cylinders remembering
the number of separating loops between two boundaries, and some of their variants
obtained by attaching a loop around one (yF.2/s ) or both (zF.2/s ) of their boundaries
which are defined in Section 2.3; we determine their critical behavior in Section 6.2,
thanks to the explicit formula for F.2/s from Proposition 4.3. We deduce the critical
behavior of FFF ’s by a saddle point analysis in Section 6.3 and Theorem 6.4. This is
then converted, as explained in Section 1.1.2, into asymptotics in the microcanoni-
cal ensemble, i.e., for fixed and large volume, boundary perimeters, and then for arm
lengths as well in Section 7.

A word of caution relevant in Section 6 concerning the canonical ensemble: the
dominant contributions depend on the set of variables for which one wishes to study
the singularities. If one is only interested later on in fixing the volume and boundary
perimeters, one should study singularities with respect to u – via the variable q –
and xi ’s. If one is interested later on in fixing as well the arm lengths, one wants to
study singularities with respect to u, xi and the collection of Boltzmann weights s
for the separating loops. It can happen that some dominant terms in the first situation
contain no singularity with respect to s, so we need to consider in the second situation
terms which were subleading in the first situation, see, e.g., Theorem 6.4. The saddle
point analysis here is facilitated as similar handlings already appeared for cylinder
generating series in [3], and the technical aspects of the present article rather focus on
the combinatorics of maps of higher topology.
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2. Properties of the generalO.n/ loop model

2.1. Definitions

We start by reminding the definition of the model, following the presentation of [5,6].

2.1.1. Loop models. A map is a finite connected graph (possibly with loops and
multiple edges) drawn on a closed orientable compact surface, in such a way that the
edges do not cross and that the connected components of the complement of the graph
(called faces) are simply connected. Maps differing by a homeomorphism of their
underlying surfaces are identified; thus there are countably many maps. The map is
planar if the underlying surface is topologically a sphere. The degree of a vertex or
a face is its number of incident edges (around a face, we count incident edges with
multiplicity). To each map, we may associate its dual map which, roughly speaking,
is obtained by exchanging the roles of vertices and faces. For k � 1, a map with k
boundaries is a map with k marked faces, pairwise distinct and labeled from 1 to k.
By convention, all the boundary faces are rooted, that is to say, for each boundary
face f , we pick an oriented edge (called a root) having f on the right. The perimeter
of a boundary is the degree of the corresponding face. Non-boundary faces are called
inner faces. We do not impose any simplicity condition on any of the faces of the map.
For k0 � 1, a map with k0 marked points is a map with marked vertices, labeled from 1

to k0, and by convention, we do not assume that the k0 marked points sit on pairwise
distinct vertices. We call marked element either a marked point or a marked face.

A triangulation with k boundaries (resp. a quadrangulation with k boundaries) is
a map with k boundaries such that each inner face has degree 3 (resp. 4).

Given a map, a loop is an undirected simple closed path on the dual map (i.e., it
covers edges and vertices of the dual map, and hence visits faces and crosses edges
of the original map). This is not to be confused with the graph-theoretical notion
of loop (edge incident twice to the same vertex), which plays no role here. A loop
configuration is a collection of disjoint loops, and may be viewed alternatively as a
collection of crossed edges such that every face of the map is incident to either 0
or 2 crossed edges. When considering maps with boundaries, we assume that the
boundary faces are not visited by loops. Finally, a configuration of the O.n/ loop
model on random maps is a map endowed with a loop configuration, see Figure 3 for
an example. For sake of clarity, we call usual map a map without a loop configuration.

Remark 2.1. In the original formulation of [26, 31, 37, 38], the loops cover vertices
and edges of the map itself. Our motivation for drawing them on the dual map is that
it makes our combinatorial decompositions easier to visualize.

2.1.2. The nesting graphs. Given a configuration C of the O.n/ loop model on
a connected map M of genus g, we may cut the underlying surface along every loop,
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Figure 3. A planar triangulation with a boundary of perimeter 8 (with root in red, the distin-
guished face being the outer face), endowed with a loop configuration (drawn in green).

which splits it into several connected components c1; : : : ; cN . Let �0 be the graph on
the vertex set ¹c1; : : : ; cN º in which there is an edge between ci and cj if and only if
they have a common boundary, i.e., they touch each other along a loop (thus the edges
of �0 correspond to the loops of C ).1 We assign to each vertex v the genus h.v/ of the
corresponding connected component, and for each marked element in M belonging
to a connected component ci , we put a mark on the corresponding vertex of �0. If the
map is planar, �0 is a tree and all its vertices carry genus 0. We call �0 the primary
nesting graph of M .

Let us consider an ensemble of maps with k00 D k C k0 � 1 marked elements,
where k is the number of boundaries and k0 the number of marked points. One
can define the nesting graph � from �0 by repeatedly performing the following
first step until it leaves the graph unchanged and then applying the second step (see
Figure 4):

(i) erasing all vertices that correspond to connected components which, in the
complement of all loops in M , are homeomorphic to disks, and the edge
incident to each of them (except for the case of an isolated vertex carrying
a mark);

(ii) replacing any maximal simple path of the form v0 � v1 � � � � � vP withP � 2,
where the vertices .vi /P�1iD1 represent connected components homeomorphic
to cylinders, by a single edge

v0
P
� vP

carrying a length P . By convention, edges which are not obtained in this way
carry a length P D 1.

1Note that multiple edges and edges which are incident twice to the same vertex can occur
when building the nesting graphs.
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Figure 4. Left: schematic representations of loop configurations on a map of genus 1 with 4
boundaries. Center: associated primary nesting graphs, where every red vertex carries the marks
of the boundaries which belong to the corresponding connected component in the map. Right:
associated nesting graphs, where every edge is labeled with its depth. All vertices carry genus 0,
except v in the first case which has h.v/ D 1.

The outcome is .�; ?;P/, where � is the nesting graph, which is connected and has
vertices labeled by genera such that

g D b1.�/C
X

v2V.�/

h.v/;

where b1.�/ D jE.�/j � jV.�/j C 1 is the first Betti number which is equal to the
number of cycles of � , where E.�/ and V.�/ denote the set of edges and the set of
vertices of � .

The sequence of lengths P records the number of consecutive “separating” loops
P.e/ for each edge e. We call every P.e/ the depth of the corresponding edge e in the
nesting graph or of the corresponding arm in the original map. By construction, given
the total genus g and a finite set of marked elements, one can only obtain finitely many
inequivalent nesting graphs. ? is the assignment of the marked elements of M to the
vertices of � . The valency d.v/ of vertices v of the nesting graph � with no marked
elements must satisfy

2h.v/ � 2C d.v/ > 0
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because we erased the vertices that corresponded to unmarked connected components
of the map with the topologies of disks and cylinders, i.e., with h.v/D 0, and d.v/D 1
and d.v/ D 2, respectively, which are the only two possibilities of .h.v/; d.v// that
would not satisfy the equality.

In this article, we study the distribution of nesting graphs and nesting variables
.�; ?;P/ in ensembles of random maps of the O.n/ model that we now define.

2.1.3. Statistical weights. TheO.n/ loop model is a statistical ensemble of configu-
rations in which n plays the role of a fugacity per loop. In addition to this “nonlocal”
parameter, we need also some “local” parameters, controlling, in particular, the size
of the maps and of the loops. Precise instances of the model can be defined in various
ways.

The simplest instance is the O.n/ loop model on random triangulations [26, 31,
37,38]: here we require the underlying map to be a triangulation, possibly with bound-
aries and marked points. There are two local parameters g and h, which are the
weights per face (triangle) distinct from a boundary and which is, respectively, not
visited and visited by a loop. The Boltzmann weight attached to a configuration C
with k � 1 boundaries is thus

w.C/ D nLgT hT
0

with L the number of loops of C , T its number of unvisited triangles and T 0 its
number of visited triangles.

A slight generalization of this model is the bending energy model [5], where we
incorporate into the Boltzmann weight w.C/ an extra factor ˛B , where B is the num-
ber of pairs of successive loop turns in the same direction, see Figure 5. Another
variant is theO.n/ loop model on random quadrangulations considered in [6] (and its
“rigid” specialization).

In the general O.n/ loop model, the Boltzmann weight of a configuration is

w.C/ D
1

jAutC j
nL

Y
l�3

g
Nl
l

Y
¹l1;l2º
l1Cl2�1

g
Nl1;l2
l1;l2

;

where Nl is the number of unvisited faces of degree l , and Nl1;l2 is the number of
visited faces of degree .l1 C l2 C 2/ whose boundary consists, in cyclic order with an
arbitrary orientation, of l1 uncrossed edges, 1 crossed edge, l2 uncrossed edges and 1
crossed edge. As the loops are not oriented here, Nl1;l2 D Nl2;l1 and we also assume
gl1;l2 D gl2;l1 . We denote by Aut.C / the subgroup of permutations of vertices and
edges respecting the root edges and leaving C invariant. It is trivial in presence of
boundaries, i.e., k � 1.
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2.1.4. Generating series. We now define the basic generating series of interest. Fix-
ing three integers k; k0 � 0 and g � 0, we consider the ensemble of allowed con-
figurations of the O.n/ model where the underlying map is a connected surface of
genus g, with k boundaries of respective lengths `1; `2; : : : ; `k � 1 (called perime-
ters) and k0 marked points. The corresponding generating series is then the sum of
the Boltzmann weights w.C/ of all such configurations. We find convenient to add an
auxiliary weight u per vertex, and define

F
.g;k;�k0/
`1;:::;`k

D ık;1ı`1;0uC
X
C

ujV.C/jw.C/; (2.1)

where the sum runs over all desired configurations C , and jV.C /j denotes the number
of vertices of the underlying map of C , also called volume, which we will denote
just V if there is no possible confusion. We simply write F .g;k/ when there are
no marked points, and F .g;k;�/ when there is one marked point. For planar maps,
i.e., g D 0, we just write F .k/

`1;:::;`k
. We call cylinders the planar maps with k D 2

boundaries, and disks the planar maps with k D 1 boundary. By convention, the map
consisting of a single vertex in the sphere is considered as a disk with a boundary of
length `1 D 0, accounting for the first term in (2.1).

In the course of studying the O.n/ loop model, we will also need the generating
series of usual maps. The Boltzmann weight of a configuration in this case is chosen
to be

w.C/ D
1

jAutC j

Y
l�1

g
Nl
l
; (2.2)

and the generating series F
.g;k;�k0/
`1;:::;`k

is defined as previously.

g

˛

h

1

Figure 5. Top row: local weights for the O.n/ loop model on random triangulations. Bottom
row: in the bending energy model, an extra weight ˛ is attached to each segment of a loop
between two successive turns in the same direction.
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2.2. Planar case: Usual maps and the nested loop approach

In maps with the topology of a disk, there is a notion of inside and outside a loop,
from the point of view of the boundary. Then, the nested loop approach [5, Section 2]
puts in bijection disks M with a loop configuration with triples .M;R;M 0/, where

• M is a usual disk, called the gasket of M . It is obtained as the connected com-
ponent containing the boundary in the complement of all loops in M , filling the
interior of each outermost loops by a face.

• R is a disjoint union of sequences of faces visited by a single loop so as to form
an annulus, which is rooted on its outer boundary. It is obtained as the collection
of faces crossed by the outermost loops in M – from the point of view of the
boundary – and the root edge on the outer boundary of each ring (call it B) is
conventionally defined to be the edge outgoing from the vertex in B which is
reached by the shortest leftmost geodesic between the origin of the root edge on
the boundary of M , and B .

• M 0 is a disjoint union of disks carrying loop configurations. These are the inside
of the outermost loops.

The nested structure of a planar disk with a loop configuration is illustrated in
Figure 6. This translates into a functional relation for the generating series of disks

F` D F`.G1; G2; : : :/; (2.3)

where the weights Gl of a face of degree l must satisfy the following fixed point
condition

Gl D gl C
X
`0�0

Al;`0F`0.G1; G2; : : :/ D gl C
X
`0�1

Al;`0 F`0 ; (2.4)

which was first established in [5, p. 6]. We have denoted by Al;` the generating series
of sequences of faces visited by a loop, which are glued together so as to form an annu-
lus, in which the outer boundary is rooted and has length l , and the inner boundary

Figure 6. Left: schematic representation of a loop configuration on a planar map with one
boundary. Right: the associated primary nesting tree (the red vertex corresponds to the gasket).
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is unrooted and has length `. Compared to the notations of [5], we decide to include
in Al;` the weight n for the loop crossing all faces of the annulus. We call Gl the
renormalized face weights. Note that, although gl could be zero for l D 1; 2 and for
l � l0, with l0 <1 a certain maximum allowed length, G1, G2 and Gl for l � l0
are a priori non-zero. For this reason, it was necessary to consider the model of usual
maps with general face weights (2.2), while we could restrict, e.g., to faces (visited or
not) of perimeter larger of equal to 3 in the definition of the generalO.n/ loop model.

In all what follows, unless explicitly mentioned, the generating series of usual
maps F .g;k/ will always be specialized to the renormalized face weights .G1;G2; : : :/.

Functional relations for more general planar maps can be deduced from this fixed
point equation. The operation of marking a boundary of length ` is realized by the
operator ` @

@g`
, while marking a vertex amounts to applying u @

@u
. For instance,

F
.2/

`1;`2
D `2

@

@g`2
F`1 ; F

.2/

`1;`2
D `2

@

@g`2
F`1 ;

F
�

` D u
@

@u
F`; F

�

` D u
@

@u
F`:

By convention, the equation for F � assumes that the evaluation to renormalized face
weights Gl given by (2.4) is done after the derivative with respect to the vertex
weight u. In other words, F � is the generating series of maps pointed in the gasket.
Therefore, we deduce from (2.3)–(2.4)

F
.2/

`1;`2
D F

.2/

`1;`2
C

X
l;l 0�1

F
.2/

`1;l
Rl;l 0F

.2/

l 0;`2
; (2.5)

F
�

` D F
�

` C

X
l 0�1; l 00�0

F
.2/

`;l 0
Rl 0;l 00F

�

l 00 (2.6)

with Rl;` D
Al;`
l

, where the factor 1
l

amounts to removing the root from the first
boundary of the annulus since it is glued to an object with a marked face which already
takes care of killing the automorphisms. We will use Rl;` every time we glue on both
sides to objects carrying extra marked elements.

More generally, F
.g;k;�k0/
`1;:::;`k

will denote the generating series of usual maps with k0

marked points, evaluated at renormalized face weights. According to the nested loop
approach, it enumerates maps in the O.n/ model, where the k boundaries and the k0

marked points all belong to the same connected component after removal of all loops.
As already remarked for F �

`
, due to the constraints on the relative position of the

marked points and the loops,

F
.g;k;�k0/
`1;:::;`k

¤ .u@u/
k0 ŒF

.g;k/
`1;:::;`k

j¹glDGl º�:

The difference comes from the order of differentiation/evaluation at u-dependent
renormalized vertex weight ¹Glº from (2.4).
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2.3. Separating loops and refined enumeration

In a map M with a non-empty set of marked elements P , a loop is separating2 if it
is not contractible in M n P . The separating loops (or sequences of separating loops)
were encoded in the edges of the nesting graph. If the map is planar, an equivalent def-
inition is saying that a loop is separating if it does not bound a disk in the underlying
surface which contains no marked element.

Let us examine the simple case of two marked elements in a planar map. Then,
either the two marked elements are not separated by a loop (the nesting graph consists
of a single vertex carrying the two marks), or they are separated by P � 1 loops (the
nesting graph consists of an edge of length P between two vertices). To fix ideas, let
us say that the first marked element is a boundary. Then, we can put such a map M
in bijection either with a cylinder having no separating loop, or a triple consisting
of a cylinder with no separating loops, an annulus of faces visited by a single loop,
and another map M 0 with p � 1 separating loops. This is the combinatorial meaning
of (2.5)–(2.6), and it allows an easy refinement. Namely, let F .2/

`1;`2
Œs� (resp. F �

`
Œs�) be

the generating series of cylinders (resp. pointed disks) where the Boltzmann weight
includes an extra factor sP , and P is the number of separating loops. We obtain from
the previous reasoning

F
.2/

`1;`2
Œs� D F

.2/

`1;`2
C s

X
l;l 0�1

F
.2/

`1;l
Rl;l 0F

.2/

l 0;`2
Œs�;

F
�

` Œs� D F
�

` C s
X

l 0�1; l 00�0

F
.2/

`;l 0
Rl 0;l 00F

�

l 00 Œs�:

In full generality, we are interested in computing F .g;k;�k0/
`1;:::;`k

Œ�; ?I s�, the refined
generating series of maps of the O.n/ model which are connected of genus g, have k
boundaries and k0 marked points, achieve the nesting graph with its markings .�; ?/,
and for which the usual Boltzmann weight contains an extra factorY

e2E.�/

s.e/P.e/:

The construction of the nesting graph provides a combinatorial decomposition of
maps. Indeed, we can retrieve bijectively the original map from .�; ?;P/, by glueing
together

• for each vertex v of valency d.v/, a usual map (with renormalized weights) of
genus h.v/ with k.v/ labeled boundaries and d.v/ other unlabeled boundaries,
and k0.v/ marked points;

2With this definition, non-contractible loops in M are separating, even though the name
could be misleading in such a case.
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• for each edge e of length 1, an annulus visited by a single loop;
• for each edge e of length P.e/ � 2, two annuli visited by a single loop capping

a cylinder with P.e/ � 2 separating loops.

Let us denote by E.�/ the set of edges and V.�/ the set of vertices of the nesting
graph � . At a given vertex v, e.v/ is the set of outcoming half-edges, and for a given
edge e, ¹eC; e�º is its set of half-edges. Let @.v/ be the set of boundaries which
are registered on marked elements on v – if there are no marked elements on v or just
k.v/D 0, then @.v/D;. Let V0;2.�/ be the set of univalent vertices v of genus 0which
carry exactly 1 boundary; the outgoing half-edge (pointing towards the boundary) is
then denoted by eC.v/, and zV .�/ D V.�/ n V0;2.�/. Let Eun.�/ be the set of edges
which are incident to vertices in V0;2.�/, and zE.�/ D E.�/ nEun.�/. We define the
set of glueing half-edges as follows:

Eglue.�/ D
[

e2 zE.�/

¹eC; e�º [
[

v2V0;2.�/

eC.v/:

Let us introduce the generating series of cylinders with one annulus (with unrooted
outer boundary) glued to one of the two boundaries

yF
.2/

`1;`2
Œs� D s

X
l�1

R`1;lF
.2/

l;`2
Œs�;

and the generating series of cylinders cuffed with two annuli with unrooted outer
boundaries

zF
.2/

`1;`2
Œs� D sR`1;`2 C s

2
X
l;l 0�1

R`1;lF
.2/

l;l 0
Œs� Rl 0;`2 :

By convention, we included in the latter an extra term corresponding to a single annu-
lus with its two boundaries unrooted.

We can determine the desired refined generating series of maps, whose corre-
sponding nesting graph is fixed, using the decomposition of any such map into the
previously introduced pieces.

Proposition 2.2. We have

F .g;k;�k0/
`1;:::;`k

Œ�; ?; s� D
X

lWEglue.�/!N

Y
v2 zV .�/

F
.h.v/;k.v/Cd.v/;�k0.v//
`.@.v//;l.e.v//

jAut.�/j

�

Y
e2 zE.�/

zF
.2/

l.e�/;l.eC/
Œs.e/�

Y
v2V0;2.�/

yF
.2/

l.eC.v//;`.@.v//
Œs.eC.v//�;

where `W
S

v2V.�/ @.v/! N is given by `1; : : : ; `k .
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3. Analytic properties of generating series

So far, all the parameters of the model were formal. We now would like to assign real
values to them. In this section, we review the properties of generating series of maps
obtained by recording all possible boundary perimeters at the same time.

3.1. Usual maps

In the context of usual maps (here not specialized to the renormalized face weights),
we say that u and a sequence .gl/l�1 of nonnegative real numbers are admissible
if F �

`
< 1 for any `. By extension, we say that u and a sequence .gl/l�1 of real

numbers are admissible if u and .jgl j/l�1 are admissible. For admissible vertex and
face weights, we can define

F .x/ D
X
`�0

F`

x`C1
2 QJx�1K:

Then, F .x/ satisfies the one-cut lemma and a functional relation coming from
Tutte’s combinatorial decomposition of rooted disks.

Theorem 3.1 ([5, Section 6]). If .gl/l�1 is admissible, then the formal series F .x/ is
the Laurent series expansion at x D1 of a function, still denoted by F .x/, which is
holomorphic for x 2C n  , where  D Œ�; C� is a segment of the real line depending
on the vertex and face weights. Its endpoints are characterized so that ˙ D s˙ 2r,
and r and s are the evaluations at the chosen weights of the unique formal series in
the variables u and .gl/l�1 such thatI



dy
2i�

.y �
P
l�1 gl y

l�1/

�.z/
D 0; uC

I


dy
2i�

y.y �
P
l�1 gl y

l�1/

�.z/
D 0;

where �.x/ D
p
x2 � 2sx C s2 � 4r. Besides, the endpoints satisfy j�j � C, with

equality if and only if gl D 0 for all odd l’s.

Theorem 3.2 ([5, Section 6]). The function F .x/ is uniformly bounded for x 2C n  .
Its boundary values on the cut satisfy the functional relation

8x 2 ; F .x C i0/C F .x � i0/ D x �
X
l�1

gl x
l�1; (3.1)

and F .x/ D u
x
CO. 1

x2
/ when x !1. These properties uniquely determine �, C

and F .x/.

Although (3.1) arise as a consequence of Tutte’s equation and analytic continua-
tion, it has itself not received a combinatorial interpretation yet.
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With Theorem 3.1 at hand, the analysis of Tutte’s equation for generating series
of maps with several rooted boundaries and their analytic continuation has been per-
formed (in a more general setting) in [2,8]. The first outcome is that, if u and .gl/l�1
are admissible, then F

.g;k;�k0/
`1;:::;`k

<1, for all g, k and k0, so that we can define

F .g;k;�k0/.x1; : : : ; xk/ D
X

`1;:::;`k�0

F
.g;k;�k0/
`1;:::;`k

x
`1C1
1 � � � x

`kC1

k

2 QJx�11 ; : : : ; x�1k K:

The second outcome is that these are as well Laurent series expansions at1 of func-
tions, still denoted by F .g;k;�k0/.x1; : : : ; xk/, which are holomorphic for xi 2 C n  ,
with the same  as in Theorem 3.1, and which have upper/lower boundary values
when xi approaches  while .xj /j¤i 2 .C n /k�1 are fixed. More specifically, for
cylinders we have the following result.

Theorem 3.3 ([24, Section 3.2]). The function �.x1/�.x2/F .2/.x1; x2/ remains uni-
formly bounded for x1; x2 2 C n  . We have the following functional relation for
x1 2 .�; C/ and x2 2 C n 

F .2/.x1 C i0; x2/C F .2/.x1 � i0; x2/ D �
1

.x1 � x2/2
;

and we have F .2/.x1;x2/2O.x
�2
1 x�22 /when x1;x2!1. These properties uniquely

determine F .2/.x1; x2/.

Once ˙ have been obtained, the formula for the generating series of usual cylin-
ders is well known (see, e.g., [24, Section 3.2]):

F .2/.x1; x2/ D
1

2.x1 � x2/2

°
� 1C

x1x2 �
�CC
2

.x1 C x2/C �C

�.x1/�.x2/

±
: (3.2)

The generating series for usual pointed disks is also particularly simple (see,
e.g., [5, (6.6)]):

F
�
.x/ D

1

�.x/
: (3.3)

Theorem 3.4 ([2, Section 4], [8, 24]). Let 2g � 2C k > 0. There exists r.g; k/ > 0
such that

�.x1/
r.g;k/F .g;k/.x1; : : : ; xk/

remains bounded when x1 approaches  while .xi /kiD2 are kept fixed away from  .
The function F .g;k/.x1; : : : ; xk/ has upper/lower boundary values for x1 2 .�; C/
and xI D .xi /kiD2 fixed away from  ; it satisfies under the same conditions,

F .g;k/.x1 C i0; xI /C F .g;k/.x1 � i0; xI / D 0;

and F .g;k/.x1; xI / 2 O.x
�2
1 / when x1 !1.
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3.2. In theO.n/ loop model

In the context of theO.n/model, we say that u and the two sequences of real numbers
.gl/l�3 and .Al1;l2/l1;l2 are admissible if u and the corresponding sequence of renor-
malized face weights .G1; G2; : : :/ computed by (2.4) are admissible. For admissible
weights, we can define

F.x/ D
X
`�0

F`

x`C1
2 QJx�1K:

In the remaining of the article, we always assume admissible weights.
As consequence of (2.3), F.x/ satisfies the one-cut property (the analog of Theo-

rem 3.1), and we still denote by ˙ the endpoints of the cuts, which now depend on
face weights .gl/l�3 and annuli weights .Al;l 0/l;l 0�0. Admissibility also implies that
the annuli generating series

R.x; y/ D
X
lCl 0�1

Rl;l 0x
lyl
0

and
A.x; y/ D

X
l�1

X
l 0�0

Al;l 0 x
l�1yl

0

D @xR.x; y/

are holomorphic in a neighborhood of  �  . And, F.x/’s boundary values on the cut
satisfy the following functional relation.

Theorem 3.5 ([5, Section 2]). The function F.x/ is uniformly bounded for x 2 C n 

and has upper/lower boundary values on  . For x 2  , we have

F.x C i0/C F.x � i0/C
I


dz
2i�

A.x; z/F.z/ D x �
X
k�1

gk x
k�1

and F.x/ D u
x
C O. 1

x2
/ when x ! 1. These properties uniquely determine F.x/

and ˙.

Now with Theorem 3.5 at hand, the analysis of Tutte’s equation for the partition
functions of maps having several boundaries in the loop model, and their analytical
continuation, has also been performed in [2, 8]. The outcome is that

F.g;k;�k
0/.x1; : : : ; xk/ D

X
`1;:::;`k�0

F
.g;k;�k0/
`1;:::;`k

x
`1C1
1 � � � x

`kC1

k

2 QJx�11 ; : : : ; x�1k K

are also well defined, and Laurent series expansions at infinity of functions, still de-
noted by F.g;k;�k0/.x1; : : : ;xk/, which are holomorphic for xi 2C n  , with the same 
independently of g, k and k0, and admit upper/lower boundary values for xi 2  while
.xj /j¤i 2 .C n /

k�1 are kept fixed. Besides, we have the following result.
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Theorem 3.6 ([2, Section 3]). The function �.x1/�.x2/F.2/.x1; x2/ remains uni-
formly bounded for x1; x2 2 C n  . For x1 2 .�; C/ and x2 2 C n  , we have
the following functional relation:

F.2/.x1 C i0; x2/C F.2/.x1 � i0; x2/C
I


dy
2i�

A.x1; y/F.2/.y; x2/

D �
1

.x1 � x2/2
;

and F.2/.x1; x2/ 2 O.x�21 x�22 / when x1; x2 !1. These properties uniquely deter-
mine F.2/.x1; x2/.

Theorem 3.7 ([2, Section 4], [8, 24]). Let 2g � 2C k > 0. There exists r.g; k/ > 0
such that

�.x1/
r.g;k/F.g;k/.x1; : : : ; xk/

remains bounded when x1 approaches  while .xi /kiD2 are kept fixed away from  .
The function F.g;k/.x1; : : : ; xk/ has upper/lower boundary values for x1 2 .�; C/
and xI D .xi /kiD2 fixed away from  , and it satisfies under the same conditions,

F.g;k/.x1 C i0; xI /C F.g;k/.x1 � i0; xI /C
I


dy
2i�

A.x; y/F.g;k/.y; xI / D 0;

and
F.g;k/.x1; xI / 2 O.x�21 /

when x1 !1.

3.3. Refined generating series

We now recall the results of [3] for the refined generating series of pointed disks and
cylinders. First of all, for admissible weights and s 2 R at least in a neighborhood
of Œ�1; 1�,

F�s.x1/ D
X
`�0

F �
`
Œs�

x
`1C1
1

2 QJx�11 K;

F.2/s .x1; x2/ D
X

`1;`2�1

F
.2/

`1;`2
Œs�

x
`1C1
1 x

`2C1
2

2 QJx�11 ; x�12 K

are well defined, and are Laurent series expansions at infinity of functions, still denot-
ed by F.2/s .x1; x2/ and F�s.x1/, which are holomorphic of xi 2 C n  , for the same 
appearing in Section 3.2, independently of s. Besides, we have linear functional rela-
tions very similar to those satisfied by the unrefined generating series.
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Theorem 3.8 ([3, Section 4]). The function �.x1/�.x2/ F.2/s .x1; x2/ is uniformly
bounded for x1; x2 2 C n  . For any x1 2 .�; C/ and x2 2 C n  fixed, we have

F.2/s .x1 C i0; x2/C F.2/s .x1 � i0; x2/C s
I


dy
2i�

A.x1; y/F.2/s .y; x2/

D �
1

.x1 � x2/2

and F.2/s .x1; x2/ 2 O.x
�2
1 x�22 / when x1; x2 !1. These properties uniquely deter-

mine F.2/s .x1; x2/.

Theorem 3.9 ([3, Section 4]). The function �.x/ F�s.x/ is uniformly bounded when
x 2 C n  . For x 2 .�; C/, we have

F�s.x C i0/C F�s.x � i0/C s
I


dy
2i�

A.x; y/F�s.y/ D 0

and F�s.x/ D
u
x
CO. 1

x2
/ when x !1. These properties uniquely determine F�s.x/.

From the analytic properties of F.2/s and R, it follows that

yF.2/s .x1; x2/ D
X

`1;`2�0

yF
.2/

`1;`2
Œs�

x
`1
1

x
`2C1
2

D s

I


dy
2i�

R.x1; y/F.2/s .y; x2/

is the series expansion when x1 ! 0 and x2 !1 of a function denoted likewise,
which is holomorphic for x1 in a neighborhood of  and x2 in C n  . And

zF.2/s .x1; x2/ D
X

`1;`2�0

zF
.2/

`1;`2
Œs�x

`1
1 x

`2
2

D sR.x1; x2/C s2
I


dy1
2i�

dy2
2i�

R.x1; y1/F.2/s .y1; y2/R.y2; x2/ (3.4)

is the series expansion at xi ! 0 of a function denoted likewise, which is holomorphic
for xi in a neighborhood of  . This fact and the analytic properties of F .g;k;�k0/ for any
g, k, k0 described in Section 3.2 imply, together with the formula of Proposition 2.2
the following assertion.

Proposition 3.10. If u, .gl/l�3 and .Al;`/l;` are admissible, then at least for s.e/ 2R

in a neighborhood of Œ�1;1� for each e 2E.�/, the generating series for fixed nesting
graph

FFF .g;k;�k0/
�;?;s .x1; : : : ; xk/ D

X
`1;:::;`k�0

F .g;k;�k0/
`1;:::;`k

Œ�; ?; s�

x
`1C1
1 � � � x

`kC1

k
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are well defined, and are the Laurent expansions at 1 of functions, denoted by the
same symbol, which are holomorphic in .x1; : : : ; xk/ 2 .C n /k for the same seg-
ment  appearing in Section 3.2. If I is a finite set, .xi /i2I a collection of variables
and J a subset of I , we denote xJ D .xj /j2J . The formula of Proposition 2.2 can be
translated into

FFF .g;k/
�;?;s.x1; : : : ; xk/ D

I

Eglue.�/

Y
e2Eglue.�/

dye
2i�

Y
v2 zV .�/

F .h.v/;k.v/Cd.v/;�k0.v//.x@.v/; ye.v//

d.v/Š

�

Y
e2 zE.�/

zF.2/
s.e/.yeC ; ye�/

Y
v2V0;2.�/

yF.2/
s.eC.v//

.yeC.v/; x@.v//:

3.4. Topological recursion

Theorem 3.11 ([8, 24]). The generating series F.g;k/ for arbitrary topologies can be
obtained from the generating series of disks F.0;1/ D F and of cylinders F.0;2/ D F.2/

by the topological recursion of [27]. This is a universal recursion on 2g� 2C k > 0.
By specialization, the generating series of usual maps at renormalized face weights
F .g;k/ is also given by the topological recursion: the initial data of the recursion is
then F .x/ D F.x/ and F .2/ given by (3.2).

The general statement of the topological recursion formula demands more notions
of complex analysis than desirable here, so we refer in general to [8, 27]. We shall
describe its somewhat simpler application to the bending energy model in the next
section.

For the general O.n/ model, we cannot go much further at present. Let us sum-
marize the logic of computation of FFF .g;k/

�;?;s, which is the main quantity of interest in
this article. Firstly, one tries to solve for F.x/ the linear equation of Theorem 3.5,
as a function of ˙, only exploiting that �.x/ F.x/ remains uniformly bounded for
x ! ˙ – for the moment, we do not use the stronger fact that F.x/ is bounded. This
problem is known a priori to have a unique solution for any choice of ˙, but is hardly
amenable to an explicit solution. Secondly, imposing that F.x/ is actually uniformly
bounded for x 2 C n  gives two non-linear equations which determine ˙. These
equations may not have a unique solution, but we look for the unique solution such
that ˙ are evaluations at the desired weights of formal power series of

p
u, gl , n

and Ak;l . Thirdly, now knowing ˙ – or assuming to know them – one tries to solve
for F.2/s .x1; x2/ the linear equation of Theorem 3.8, in a uniform way for any s. This
problem is as difficult as the first step.3 In a fourth step, if ˙, F.x/, and F.2/.x1; x2/

3As a matter of fact, there exists a general and explicit linear formula to extract F.x/
(resp. F�s) from the knowledge of F.2/

sD1
.x1; x2/ (resp. F.2/s .x1; x2/), which we will not need

here.
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are known or assumed so, the topological recursion allows the explicit computation
of F.g;k/.x1; : : : ; xk/ by induction on 2g � 2 C k. We now have all the ingredi-
ents to compute in a fifth step the generating series FFF .g;k/

�;?;s in absence of marked
points.

3.5. Adding marked points

The computation of generating series of maps with marked points is done a posteriori.
For the generating series of maps with loops where the position of the marked points
is not constrained, we simply have

F.g;k;�k
0/
D .u@u/

k0F.g;k/:

To force marked points and boundaries to be all together, not separated by loops, i.e.,
to compute F .g;k;�k0/, we proceed differently.

Consider a usual map of genus g with k boundaries of perimeters .`i /kiD1. Denote
by V the number of vertices, by E the number of edges, and by .Nm/m�1 the number
of (non-marked) faces of degree m. We have the Euler relation

2 � 2g � k D V �E C
X
m�1

Nm;

and counting half-edges gives

2E D
X
m�1

mNm C

kX
iD1

`i :

Then, the number of vertices is

V D 2 � 2g � k C
X
m�1

�m
2
� 1

�
Nm C

kX
iD1

1

2
`i :

Therefore, the operation of marking a point is realized at the level of generating
series by application of the operator

2 � 2g � k C
X
m�1

�1
2
�
1

m

�
mgm@gm �

kX
iD1

1

2
@xixi :

In particular, if we denote

V.x/ D
1

2
x2 �

X
m�1

gm

m
xm
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the generating series of usual maps with marked points and (non-renormalized) face
weights ¹gmºm�1 satisfies, for all k0 � 1

F
.g;k;�k0/
bare .x1; : : : ; xk/

D

�
2 � 2g � k �

kX
iD1

1

2
@xixi

�
F
.g;k;�.k0�1//
bare .x1; : : : ; xk/

�

I


dy
2i�

�y
2

V0.y/ � V.y/
�
F
.g;kC1;�.k0�1//
bare .y; x1; : : : ; xk/:

For renormalized face weights ¹Gmºm�1, we have to take into account the shift
from gm to Gm (2.4), resulting in

F .g;k;�k0/.x1; : : : ; xk/

D

�
2 � 2g � k �

kX
iD1

1

2
@xixi

�
F .g;k;�.k0�1//.x1; : : : ; xk/

�

I


dy
2i�

�y
2
zV0.y/ � zV.y/

�
F .g;kC1;�.k0�1//.y; x1; : : : ; xk/; (3.5)

where
zV.x/ D V.x/ �

I


dz
2i�

R.x; z/F.z/:

4. The bending energy model

4.1. Definition

We shall focus on the class of loop models with bending energy on triangulations
studied in [5], for which the computations can be explicitly carried out. On top of the
loop fugacity n and the vertex weight u, it features a weight g per unvisited triangle,
h per visited triangle, and ˛ per consecutive pair of visited triangles pointing in the
same direction. The annuli generating series in this model are

R.x; z/ D n ln
� 1

1 � ˛h.x C z/ � .1 � ˛2/h2xz

�
D n ln

� 1

z � &.x/

�
C
n

2
ln
�& 0.x/
�h2

�
;

A.x; z/ D @xR.x; z/ D n
� & 0.x/

z � &.x/
C
& 00.x/

2& 0.x/

�
;

(4.1)

where

&.x/ D
1 � ˛hx

˛hC .1 � ˛2/h2x
(4.2)
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is a rational involution. We assume that the weights are admissible, and thus all rele-
vant generating series of maps with boundaries have a cut Œ�; C�.

Technically, the fact that A.x; y/ is a rational function with a single pole allows
for an explicit solution of the linear equation for F.x/ and F.2/s .x1; x2/, assuming ˙
are known (see Section 4.2.2). Then, ˙ are determined implicitly by two complicated
equations; cf. (4.10) below. This is nevertheless explicit enough to analyze the critical
behavior of the model (see Section 5).

4.2. Solving the linear equation

4.2.1. Preliminaries. If f is a holomorphic function in C n  such that f .x/ � cf
x

when x !1, we can evaluate the contour integralI


dy
2i�

A.x; y/f .y/ D �n& 0.x/ f .&.x//C ncf
& 00.x/

2& 0.x/
; (4.3)

where we notice that
& 00.x/

2& 0.x/
D �

1

x � &.1/
:

Therefore, a linear equation of the form

f .x C i0/C f .x � i0/C s
I


dy
2i�

A.x; y/f .y/ D '.x/ 8x 2 .�; C/

becomes

f .x C i0/C f .x � i0/ � ns& 0.x/f .&.x//

D z'.x/ WD '.x/ � nscf
& 00.x/

2& 0.x/
8x 2 .�; C/: (4.4)

When ns ¤ ˙2, which is assumed here,

f hom.x/ D f .x/ �
2z'.x/C ns& 0.x/z'.&.x//

4 � n2s2

with f a solution of (4.4), satisfies the following homogeneous linear equation:

8x 2 .�; C/; f hom.x C i0/C f hom.x � i0/ � ns& 0.x/f hom.&.x// D 0: (4.5)

If we assume that '.x/ is a given rational function with poles q away from  , f hom.x/

acquires poles at the same points, and we have

f hom.x/ D ıq;1
cf

x
�
2z'.x/C ns& 0.x/z'.&.x//

4 � n2s2
CO.1/; x ! q:
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So, we are left with the problem of solving (4.5) with vanishing right-hand side, but
admitting rational singularity with prescribed divergent part at a finite set of points
q 2 C n  .

The key to the solution is the use of an elliptic parametrization x D x.v/. It de-
pends on a parameter � D iT which is completely determined by the data of ˙
and &.˙/. The domain C n . [ &.// is mapped to the fundamental rectangle
(Figure 7) °

v 2 C; 0 < Re v <
1

2
; jIm vj < T

±
with values at the corners

x.�/ D x.��/ D C; x
�
� C

1

2

�
D x

�
�� C

1

2

�
D �;

x.0/ D &.C/; x
�1
2

�
D &.�/:

Besides, when x is in the physical sheet,

v.&.x// D � � v.x/:

Since the involution & is decreasing, &.�/ belongs to the union .&.C/;C1/ t
.�1; �/, and therefore x D 1 is mapped to v1 D 1

2
C �w1 with 0 < w1 < 1

2
.

When ˛ D 1, by symmetry we must have w1 D 1
2

.
The function v 7! x.v/ is analytically continued for v 2 C by the relations

x.�v/ D x.v C 1/ D x.v C 2�/ D x.v/:

�
1
2
C � � D iT 1

2
C �

� C �

�
1
2 0

1
2

1
2
C �w1

�.�/ �.C/ �.�/

1

Figure 7. The fundamental rectangle in the v-plane. We indicate the image of special values
of x in purple, and the image of the cut  in red. The left (resp. right) panel is the image of
Im x > 0 (resp. Im x < 0).
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This parametrization allows the conversion [5, 26] of the functional equation

8x 2 V; f .x C i0/C f .x � i0/ � n & 0.x/ f .&.x// D 0

for an analytic function f .x/ in C n  , into the functional equation

8v 2 C; zf .v C 2�/C zf .v/ � n zf .v � �/ D 0;

with zf .v/ D zf .v C 1/ D � zf .�v/;
(4.6)

for the analytic continuation of the function zf .v/ D f .x.v//x0.v/. The second con-
dition in (4.6) enforces the continuity of f .x/ on R n  . We set

b D
arccos.n

2
/

�
:

The new parameter b ranges from 1
2

to 0 when n ranges from 0 to 2. Solutions of
the first equation of (4.6) with prescribed meromorphic singularities can be built from
a fundamental solution ‡b , defined uniquely by the properties

‡b.v C 1/ D ‡b.v/; ‡b.v C �/ D e
i�b‡b.v/; ‡b.v/ �

v!0

1

v
: (4.7)

Its expression and main properties are reminded in Appendix A.

4.2.2. Elementary generating series. We present the solution for the generating
series of disks, and of refined disks and cylinders. Let G.v/ be the analytic contin-
uation of

x0.v/F.x.v// � @v
�2V.x.v//C nV.&.x.v///

4 � n2
�
nu lnŒ& 0.x.v//�
2.2C n/

�
; (4.8)

where
V.x/ D

1

2
x2 �

X
k�1

gl

l
xl

collects the weights of empty faces. In the model we study, empty faces are triangles
counted with weight g each, so V.x/ D 1

2
x2 � g

3
x3. Let us introduce .zgl/l�1 as the

coefficients of the expansion

@

@v

�
�
2V.x.v//
4 � n2

C
2 ln x.v/
2C n

�
D

v!v1

X
k�1

zgk�1

.v � v1/k
CO.1/: (4.9)

Note that there are only finitely many zgl ¤ 0, since V is polynomial and x.v/ has
a single pole at v D v1. Their expressions for the model where all faces are triangles
are recorded in Appendix C.
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Proposition 4.1 (Disks [5]). We have that

G.v/ D
X
l�0

1

2

.�1/l zgl

lŠ
@lv1 Œ‡b.v C v1/C ‡b.v � v1/

� ‡b.�v C v1/ � ‡b.�v � v1/�:

The endpoints ˙ are determined by the two conditions

G.� C "/ D 0; " D 0;
1

2
; (4.10)

which follow from the fact that F.x/ remains bounded when x ! ˙.

For use in refined generating series, let us define

b.s/ D
arccos.ns

2
/

�
:

Proposition 4.2 ([3]). Define G�

s.v/ as the analytic continuation of

x0.v/F�s.x.v//C @v
�nsu lnŒ& 0.x.v//�

2.2C ns/

�
:

We have

G�

s.v/ D
u

2C ns
Œ�‡b.s/.v C v1/ � ‡b.s/.v � v1/

C ‡b.s/.�v C v1/C ‡b.s/.�v � v1/�:

Proposition 4.3 ([3, 7]). Define G.2/
s .v1; v2/ as the analytic continuation of

x0.v1/x
0.v2/F.2/s .x.v1/; x.v2//

C
@

@v1

@

@v2

�2 lnŒx.v1/ � x.v2/�C ns lnŒ&.x.v1// � x.v2/�
4 � n2s2

�
:

We have

G.2/
s .v1; v2/ D

1

4 � n2s2
Œ‡ 0b.s/.v1 C v2/ � ‡

0
b.s/.v1 � v2/

� ‡ 0b.s/.�v1 C v2/C ‡
0
b.s/.�v1 � v2/�:

Remark 4.4. When there is no bending energy, i.e., ˛ D 1, the 4-terms expressions
of Propositions 4.1 and 4.2 can be reduced to 2 terms using � � v1 D v1 mod Z and
the pseudo-periodicity of the special function ‡b .
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4.3. Topological recursion

Theorem 3.7 in the special case of the bending energy model shows that the function
F.g;k/.x1; x2; : : : ; xk/ for 2g � 2C k > 0 satisfies the homogeneous linear equation
with respect to x1, for fixed .xi /kiD2. Following Section 4.2, we can thus introduce a
meromorphic function G.g;k/.v1; : : : ; vk/ as the analytical continuation of

F.g;k/.x.v1/; : : : ; x.vk//
kY
iD1

x0.vi /:

It is also convenient to introduce a shift for the case of cylinders. We consider

xG.g;k/.v1; : : : ; vk/ D G.g;k/.v1; : : : ; vk/C ıg;0ık;2

�2 � n2
4 � n2

x0.v1/x
0.v2/

.x.v1/ � x.v2//2

�
n

4 � n2
& 0.x.v1//x

0.v1/x
0.v2/

.x.v1 � �/ � x.v2//2

�
: (4.11)

While G.2/.v1; v2/ satisfied the homogeneous linear equation, xG.2/.v1; v2/ satis-
fies, with respect to v1, the inhomogeneous version of equation (4.6) with right-hand
side 1

.x.v1/�x.v2//2
.

Our starting point is the topological recursion residue formula proved in [7] or
[8, Section 5]. Let us define the recursion kernel, for " 2 ¹0; 1

2
º,

K".v0; v/ D �
dv
2

R v
2.�C"/�v

dv0 xG.2/.v0; v0/

G.v/CG.2� � v/
:

If k � 2, let I D ¹2; : : : ; kº, and if kD 1, I D;. If J is a set, we denote vJ D .vj /j2J .

Theorem 4.5. For 2g � 2C k > 0, we have

xG.g;k/.v1; vI / D
X

"2¹0; 12 º

ResvD�C" K".v1; v/

�
xG.g�1;kC1/.v; 2.� C "/ � v; vI /

C

no disksX
hCh0Dg
JtJ 0DI

xG.h;1CjJ j/.v; vJ /xG.h0;1CjJ 0j/.2.� C "/ � v; vJ 0/

�
;

where “no disks” means that we exclude the terms containing disk generating series,
that is, .h; J / or .h0; J 0/ equal to .0;;/.

We are going to rewrite this recursion without involving residues. We first need to
introduce some notations. Let us define the elementary blocks

" 2
°
0;
1

2

±
; B";l.v/ D

@2l

@v2l2

xG.2/.v; v2/
ˇ̌̌
v2D�C"

: (4.12)
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Since x.� C "C w/ is an even function of w, formula (4.12) is insensitive to replac-
ing xG.2/ by G.2/. From the structure of G.2/ D G.2/

sD1 shown in Proposition 4.3, we
see that

B";l.v/ D @2lv B";0.v/: (4.13)

Proposition 4.6. For 2g � 2C k > 0, we have a decomposition

xG.g;k/.v1; : : : ; vk/D G.g;k/.v1; : : : ; vk/D
X

l1;:::;lk�0

"1;:::;"k2¹0;
1
2 º

C.g;k/
�
l1
"1
� � �

lk
"k

� kY
iD1

B"i ;li .vi /;

where the sum contains only finitely many non-zero terms.

As a consequence of Theorem 4.5, the coefficients C.g;k/Œ lI"I � satisfy the recursion
given in Proposition 4.7 below. Its proof appears right after Proposition 4.7.

4.3.1. Initial conditions. We denote by y";1 and y";2 the first two coefficients in the
Taylor expansion at w ! 0,

�"G.w/ WD G.w C � C "/CG.�w C � C "/y";1w2 C
y";2

6
w4 CO.w6/: (4.14)

We also need the constants

�b;2mC1 D lim
w!0

�
‡
.2mC1/

b
.w/C

.2mC 1/Š

w2mC2

�
; (4.15)

introduced in Appendix A. The initial conditions for the recursion concern .g; k/ D
.0; 3/ and .1; 1/ are

C.0;3/
�
l1
"1
l2
"2
l3
"3

�
D �

2ıl1;l2;l3;0ı"1;"2;"3
y"1;1

; C.1;1/
�
l
"

�
D ıl;0

� y";2

24y2";1
C
�b;1

y";1

�
�

ıl;1

24y";1
:

4.3.2. The recursion coefficients. We first define

K
�
l
"
m
�
m0

� 0

�
D ReswD0

�w2lC1dw
.2l C 1/Š�"G.w/

B�;m.wC � C "/B� 0;m0.�wC � C "/: (4.16)

Since �"G.w/ is even, we have the symmetry

K
�
l
"
m
�
m0

� 0

�
D K

�
l
"
m0

� 0
m
�

�
:

By counting the degree of the integrand at w D 0, we find selection rules. There are
finitely many indices for which K does not vanish,

¹" D � D � 0 and l � mCm0 C 2º; or

¹" D � ¤ � 0 and l � mC 1º; or

¹" ¤ � D � 0 and l D 0º:
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We also define

zK
�
l
"
l 0

"0
m
�

�
D

�ı";"0

.2l C 1/Š .2l 0/Š
ReswD0 dw

w2.lCl
0/C1

�"G.w/
B�;m.� C "C w/: (4.17)

There are finitely many values of the parameters for which zK does not vanish,

¹" D "0 D � and l C l 0 � mC 1º; or ¹" D "0 ¤ � and .l; l 0/ D .0; 0/º:

4.3.3. The recursion formula.

Proposition 4.7. Assume 2g� 2C k � 2, and denoteLD ¹2; : : : ; kº. The coefficients
of the decomposition in Proposition 4.6 satisfy

C.g;k/
�
l1
"1
� � �

lk
"k

�
D

X
m;m0�0

�;� 02¹0; 12 º

K
�
l1
"1
m
�
m0

� 0

�
C.g�1;kC1/

�
m
�
m0

� 0
lL
"L

�

C

stableX
hCh0Dg
JtJ 0DL

m;m0�0; �;� 02¹0; 12 º

K
�
l1
"1
m
�
m0

� 0

�
C.h;jJ jC1/

�
m
�
lJ
"J

�
C.h
0;1CjJ 0j/

�
m0

� 0
lJ 0
"J 0

�

C

X
i2L;m�0

�2¹0; 12 º

2 zK
�
l1
"1
li
"i
m
�

�
C.g;k�1/

�
m
�
lLn¹iº
"Ln¹iº

�
; (4.18)

where “stable” means that we exclude the terms involving disk or cylinder generating
series, i.e., for which .h; jJ j C 1/ or .h0; jJ 0j C 1/ belongs to ¹.0; 1/; .0; 2/º.

Although this recursion gives a non-symmetric role to the first boundary, the result
ensuing from the initial conditions of Section 4.3.1 is symmetric. This must be true
by consistency, and this is, in fact, a general property of the topological recursion,
cf. [27, Theorem 4.6].

4.4. Proof of Propositions 4.6 and 4.7

4.4.1. Properties of the elementary blocks. We have called elementary blocks the
following functions:

B";l.v/ D
@2l

@v2l2
G.2/.v; v2/

ˇ̌̌
v2D�C"

: (4.19)

Lemma 4.8. The function B";l.� C "0Cw/ is regular atwD 0 if "¤ "0, and behaves
like .2l C 1/Šw�.2lC2/ CO.1/ when w ! 0 if " D "0.
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Proof. We compute using Proposition 4.3 and the properties (4.7) of ‡b

B";l.� C "0 C w/

D
.e2i�b�1/‡

.2lC1/

b
."C "0w/C .e�2i�b�1/‡

.2lC1/

b
."C "0�w/

4 � n2
: (4.20)

We deduce its behavior when w ! 0. Since ‡b is regular at the value 1
2

, (4.20) is
regular at w D 0 when " ¤ "0. If " D "0, the simple pole of ‡b produces the divergent
behavior

B";l.� C "C w/ D
.2l C 1/Š

w2lC2
CO.1/:

We shall need later in the computation of G.1;1/ the following lemma.

Lemma 4.9. We have

xG.2/.� C "C w; � C " � w/ D
w!0

1

4w2
� �b;1 C o.1/; (4.21)

where �b;1 is the constant computed in (A.3).

Proof. We compute with (4.11)

xG.2/.� C "C w; � C " � w/ D �
2 � n2

4 � n2

�
�b;1 C

Sx.� C "C w/

6

�
C

n

4 � n2
x0."C w/x0.� C "C w/

.x."C w/ � x.� C "C w//2

�
‡ 0
b
.2w/C ‡ 0

b
.�2w/

4 � n2
; (4.22)

where we introduced the Schwarzian derivative

Sx.v/ D
x000.v/

x0.v/
�
3

2

�x00.v/
x0.v/

�2
:

Since x0.� C "C w/ is an odd function of w, the second term in (4.22) is o.1/ when
w ! 0. We also compute

1

6
Sx.� C "C w/ D

1

6

�
x0000.� C "/

x00.� C "/
�

3

2w2

�
1C x0000.�C"/

2x00.�C"/
w2

1C x0000.�C"/
6x00.�C"/

w2

�2
CO.w2/

�
D �

1

4w2
CO.w2/

and
‡ 0b.2w/C ‡

0
b.�2w/ D 2

�
�

1

4w2
C �b

�
C o.w2/:

Collecting all terms in (4.22), we find (4.21).
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4.4.2. Computing the residues. Now we are ready to examine the formula of The-
orem 4.5. In order to compute the residues at v! � C ", we should first compute the
expansion of the recursion kernel near those points. If we set

v D .� C "/C w and �"G.w/ D G.� C "C w/CG.� C " � w/;

we find

K".v0; � C "C w/ D
�1

2�"G.w/

Z w

�w

dz
�X
l�0

B";l.v0/
z2l

.2l/Š
C odd terms

�
D �

X
l�0

w2lC1

.2l C 1/Š�"G.w/
B";l.v0/; (4.23)

in terms of the elementary blocks (4.19). Since we consider a model with off-critical
weights,�"G.w/ has exactly a double zero atw! 0. Subsequently, K".v0; �C"Cw/

has a simple pole at w D 0, and the term indexed by l in the sum has a simple pole if
l D 0, and has a zero of order .2l � 1/ if l � 1.

We prove Propositions 4.6 and 4.7 by induction on � D 2g� 2C k > 0. The first
case to consider is �D 1, i.e., .g; k/D .0;3/ or .1;1/. For .g; k/D .0;3/, Theorem 4.5
yields

G.0;3/.v1; v2; v3/ D
X

"2¹0; 12 º

ReswD0 K".v1; � C "C w/

� ŒxG.2/.� C "C w; v2/ xG.2/.� C " � w; v3/

C xG.2/.� C "C w; v3/ xG.2/.� C " � w; v2/�:

As one can check from Proposition 4.3, G.2/.� C "C w; v0/ is regular when w ! 0.
Therefore, the residue picks up the term l D 0 in the expansion of the recursion kernel,
and evaluates the function between brackets to w D 0. The result is thus of the form
announced in Proposition 4.6, with only non-zero coefficients

C.0;3/
�
0
"
0
"
0
"

�
D �

2

y";1
; " 2

°
0;
1

2

±
; (4.24)

computed using also expansion (4.14) of �"G.w/.
For .g; k/ D .1; 1/, Theorem 4.5 yields

G.1;1/.v1/ D
X

"2¹0; 12 º

ReswD0 K".v1; � C "C w/ � xG.2/.� C "C w; � C " � w/:

We have seen in Lemma 4.9 that the last factor has a double pole when w ! 0, with
no simple pole and the constant term ��b;1 defined in (A.3). Then, we have to expand
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the recursion kernel up toO.w2/ in order to obtain the final answer for G.1;1/. In other
words, we only need to include the terms l D 0 and l D 1, and use expansion (4.14)
of the denominator to perform the computation

K".v1; � C "C w/ D �
B";0.v1/
y";1

1

w
C

�y";2B";0.v1/
y2";1

�
B";1.v1/
y";1

�w
6
C o.w/:

We find eventually

G.1;1/.v1/ D
X

"2¹0; 12 º

� y";2

24y2";1
C
�b;1

y";1

�
B";0.v1/ �

B";1.v1/
24y";1

:

The answer is of the form of Proposition 4.6, with only non-zero coefficients

C.1;1/
�
0
"

�
D

y";2

24y2";1
C

�b

y";1
; C.1;1/

�
1
"

�
D �

1

24y";1
: (4.25)

Now, take � � 2, and assume the result is true for all xG.g0;k0/ D G.g0;k0/, with
0 < 2g0 � 2 C k0 < �. We would like to compute G.g;k/ for a topology such that
2g � 2C k D �. The residue formula of Theorem 4.5 involves G.g0;k0/ for 0 < 2g0 �
2C k0<�, which we replace by the decomposition of Proposition 4.6, as well as xG.2/.

The terms which do not contain xG.2/ give a contribution which is the sum over
indices .lj ; "j /j2I and indices .m; �/, .m0; � 0/ of terms containing the factorhY

j2I

B"j ;lj .vj /
i

ReswD0 K".v0; � C "C w/B�;m.� C "C w/B� 0;m0.� C " � w/

D

X
l�0

hY
j2I

B"j ;lj .vj / � B";l.v0/
i
K
�
l
"
m
�
m0

� 0

�
: (4.26)

We computed the residue thanks to the expansion of K" given in (4.23), and we intro-
duced coefficient (4.16)

K
�
l
"
m
�
m0

� 0

�
D ReswD0

�dww2lC1

.2l C 1/Š�"G.w/
B�;m.� C "C w/B� 0;m0.� C " � w/:

These terms thus form a linear combination of products of elementary blocks in the
variables v0, .vj /j2I , which contribute to C.g;k/Œ l" lI"I � by the two first lines in for-
mula (4.18).

Since 2g � 2C k � 2, the contribution to G.g;k/.v0; vI / containing xG.2/ is pre-
cisely the sum over " 2 ¹0; 1

2
º and i 2 I D ¹2; : : : ; kº of

ReswD0 K".v0; � C "C w/

� ŒxG.2/.� C "C w; vi /G.g;k�1/.� C " � w; vIn¹iº/C .w ! �w/�: (4.27)
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The quantity in brackets can be decomposed using odd and even parts,

2ŒxG.2/
even.� C "C w; vi /G.g;k�1/

even .� C "C w; vIn¹iº/

� xG.2/
odd.� C "C w; vi /G.g;k�1/

odd .� C "C w; vIn¹iº/�:

When we insert into this expression the decomposition of Proposition 4.6 for G.g;k�1/,
we have to deal with the sum over indices .lj ; "j /j¤i and .m; �/ of terms of the form

2C.g;k�1/
�
m
�
lIn¹iº
"In¹iº

� Y
j2In¹iº

B"j ;lj .vj / � ŒxG
.2/
even.� C "C w; vi /Beven

�;m.� C "C w/

� xG.2/
odd.� C "C w; vi /Bodd

�;m.� C "C w/�: (4.28)

By Lemma 4.8, Bodd
�;m.� C "C w/ 2 O.w/ when w ! 0. Since xG.2/.� C "C w; vi /

is regular when w ! 0, this implies that the product of the odd parts does not con-
tribute to residue (4.27). Besides, the expansion at w ! 0 of the product of even
parts in (4.28) can be expressed in terms of the elementary blocks. We thus obtain
a contributionX

l;li�0

2 C.g;k�1/
�
m
"

lIn¹iº
"In¹iº

�h Y
j2In¹iº

B"j ;lj .vj / � B";l.v0/B";li .vi /
i
zK
�
l
"
l 0

"0
m
�

�
; (4.29)

and we have defined

zK
�
l
"
l 0

"0
m
�

�
D ı";"0 ReswD0

�dww2lC1

.2l C 1/Š�"G.w/
�
w2l

0

.2l 0/Š
� B�;m.w C � C "/;

which is the coefficient announced in (4.17). Since the prefactor of B in the residue is
an odd 1-form in w, the residue picks up the even part of B, so it did not change the
result to replace Beven by B. Let us examine the cases for which zK does not vanish.
If " D � , we take into account the behavior at w ! 0 of B";m.� C "C w/ given by
Lemma 4.8, and find

zK
�
l
"
l 0

"0
m
�

�
D ı";"0

1

.2l C 1/Š.2l 0/Š
ReswD0

�dww2.lCl
0/

�"G.w/

�

� .2mC 1/Šw�2m
w

C w�b;2mC1

�
; (4.30)

where �b;2mC1 are the constants introduced in (A.2). Since �"G.w/ has a double
zero at w D 0, (4.30) vanishes if l C l 0 � mC 2. If " ¤ � , Lemma 4.8 tells us that
B�;m.� C " C w/ is regular at w D 0, hence zK vanish unless .l; l 0/ D .0; 0/, and
we have

zK
�
0
"
0
"
m
�

�
D �

B�;m.� C "/
y";1

D
‡
.2mC1/

b
.1
2
/

y";1
:
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The second equality in the above formula follows from (4.20) and from the properties
of ‡b described in Appendix A. We can study in a similar way the cases for which K
does not vanish: we leave this computation to the reader. Such a computation requires
using only using Lemma 4.8 and the double zero of �"G.w/ at w D 0.

Collecting all the terms from (4.26) and (4.29), we arrive to formula (4.18) and
conclude the recursive proof.

4.5. Diagrammatic representation

Unfolding the recursion yields a formula for G.g;k/ with 2g� 2C k > 0 as a sum over
the set � .g;k/ of graphs G with first Betti number g, trivalent vertices equipped with
a cyclic order of their incident edges, and legs (univalent vertices) labeled ¹1; : : : ; kº.
With this definition, if there is an edge from a trivalent vertex to itself (a loop), the
cyclic order is just the transposition of the two distinct incident edges. The weight
given to a graph actually depends on the choice of an initial leg i0, but the sum over
graphs is independent of those choices [28].

Before stating the formula, we need a preliminary construction. If G 2 � .g;k/,
we denote by V.G / the set of trivalent vertices and by E.G / the set of edges. We also
denote by Vo.G / the set of trivalent vertices with a loop. If v is a vertex, we denote
by eŒv� its set of incident edges. A simple counting gives

jE.G /j D 3g � 3C 2k; jV.G /j D 2g � 2C k:

4.5.1. Exploration of a cyclically ordered graph. The choice of an initial leg and
the data of the cyclic order determines a way to explore G , i.e., two bijections

'W ¹1; : : : ; jE.G /jº ! E.G /;

�W ¹1; : : : ; jV.G /j C kº ! V.G / [ ¹1; : : : ; kº

that record in which order the edges, and the vertices or legs, are visited. Let us
describe how ' and � are constructed.

We declare that �.1/ is the initial leg, and '.1/ is the edge incident to the ini-
tial leg i0. Since 2g � 2C k > 0, G must have at least a trivalent vertex, so '.1/ is
also incident to a trivalent vertex that we declare to be �.2/. We define a seed with
initial value .'.1/; �.2//. Then, we apply the following algorithm. Let (e D '.j1/,
v D �.j2/) be the seed. If v is not a leg, let eC (resp. e�) be the edge following (resp.
preceding) e in the cyclic order around v.

First case: either v is a leg or, otherwise, eC and e� have already been explored
(i.e., are equal to '.iC/ and '.i�/ for some i˙ < j1). If actually all vertices have
already been explored (i.e., j2 D jV.G /j C k), the algorithm terminates; otherwise,
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we consider the maximal j 02 < j2 such that �.j 02/ is not a leg, and the maximal j 01 � j1
such that '.j 01/ is incident to �.j 02/, and reset the seed to .'.j 01/; �.j

0
2//.

Second case: eC has not been explored. We define '.j1 C 1/ D eC D ¹v; vCº and
�.j2 C 1/ D vC, and reset the seed to .eC; vC/.

Third case: eC has already been explored, but not e�. We define '.j1 C 1/ D e� D
¹v; v�º and �.j 0 C 1/ D v�, and reset the seed to .e�; v�/.

Now, at any trivalent vertex vwhich does not have a loop, we can label the incident
edges e0v , e1v , e2v , starting from the edge such that '�1.e0v / is minimal among eŒv�, and
following the cyclic order. If a trivalent vertex v has a loop, we can just label by e0v the
incident edge which is not a loop, and by e1v the other one; this definition also agrees
with the order of exploration at v.

Definition 4.10. A trivalent vertex v is bi-terminal if e1v and e2v are incident to legs.
It is terminal if e1v or e2v is incident to a leg. We denote by Vt .G / (resp. Vt t .G /) the set
of (bi-)terminal vertices, and by V 0.G / the set of trivalent vertices which are neither
terminal, neither bi-terminal, nor have a loop.

We stress that, for a given graph, all these notions depend on the choice of an
initial leg.

4.5.2. The unfolded formula. Let Col.G I .l ; "// be the set of colorings of edges by
labels in N � ¹0; 1

2
º such that

• the coloring of edges incident to legs agrees with the fixed coloring .l ; "/ of the
legs;

• the color of a loop is identical to the color of the other edge incident to the vertex
where the loop is attached.

If .m; � / is such a coloring, and v is a trivalent vertex which does not have a loop,
we define mŒv� to be the sequence .m.e0v /; m.e1v /; m.e2v //, and similarly for the se-
quence � Œv�. One proves the following assertion by induction.

Proposition 4.11. For 2g � 2C k > 0, we have

C.g;k/
�
l1
"1
� � �

lk
"k

�
D

X
G2�.g;k/

.m;� /2Col.G I.l ;"//

Y
v2V 0.G /

K
�mŒv�
� Œv�

� Y
v2Vt .G /

zK
�mŒv�
� Œv�

�
�

Y
v2Vtt .G /

C.0;3/
�mŒv�
� Œv�

� Y
v2Vo.G /

C.1;1/
�m.e0v /
�.e0v /

�
:

4.5.3. Usual maps with renormalized face weights. Recall that F.g;k/jnD0 is the
generating series of usual triangulations, with weight g3 per triangle. This is different
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from F .g;k/, which, by definition, is the generating series of usual maps with renor-
malized face weights (2.4), and still depends on n.

Recall that F.g;k/ depends on n in two ways. Firstly, n appears as a proportionality
coefficient in A.x; y/ – see (4.1) – in the linear functional relation of Theorem (3.7).
Secondly, the linear equation for F.x/ gives two equations determining ˙ as func-
tions of n, and this data gives the interval x 2 .�; C/ on which the linear equation
for F.g;k/ holds. For .g; k/¤ .0; 1/, we can disentangle the two dependencies in n: let
us call n1 the variable appearing linearly in the linear equation, and n2 the variable on
which ˙ depends. We denote momentarily by F.g;k/n1;n2 the corresponding generating
series. Note that the parametrization x.v/ only depends on n2.

The previous remarks show that the generating series of maps in theO.n/model is

F.g;k/ D F.g;k/n1Dn; n2Dn
;

while the generating series of usual maps with renormalized face weights is

F .g;k/
D F.g;k/n1D0; n2Dn

:

Note however that F .x/ D F.x/.
Let us use curly letters to denote the analog, in the context of usual maps with

renormalized face weights, of all quantities defined in the context of maps of theO.n/
model. We have

xG
.2/
.v1; v2/ D

1

4
Œ‡ 01=2.v1 C v2/ � ‡

0
1=2.v1 � v2/ � ‡

0
1=2.�v1 C v2/

C ‡ 01=2.�v1 � v2/�C
x0.v1/x

0.v2/

2.x.v1/ � x.v2//2
;

where‡1=2 is a function of the elliptic modulus � , thus a function of n2. The modified
building block is defined as

B";l.v/ D @
2l
v B";0.v/; B";0.v/ D xG

.2/
.v; � C "/:

As the generating series of disks are F.x/ D F .x/ and the parametrization x.v/ only
depends on n2, we have

�"G .v/ D �"G.v/:

The modified recursion coefficients (compare with (4.16)–(4.17)) are

K
�
l
"
m
�
m0

� 0

�
D ReswD0

�w2lC1dw
.2l C 1/Š�"G.w/

B�;m.w C � C "/B� 0;m0.�w C � C "/;

zK
�
l
"
l 0

"0
m
�

�
D

�ı";"0

.2l � 1/Š.2l 0/Š
ReswD0

dw
w

w2.lCl
0/

�"G.w/
Bm;� .� C "C w/:
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Following the proof of Proposition 4.7, the non-zero modified initial data read

C .0;3/
�
l1
"1
l2
"2
l3
"3

�
D �

2 ıl1;l2;l3;0 ı"1;"2;"3
y"1;1

;

C .1;1/
�
l
"

�
D ıl;0

� y";2

24y2";1
C
�1=2;1

y";1

�
�

ıl;1

24y";1
:

Compared to the initial conditions for C’s, the only difference is the replacement
of �b;1 by �1=2;1 (see (4.15) for their definition) in C .1;1/Œ0" �. Then, the analog of
Propositions 4.6–4.11 is the following assertion.

Proposition 4.12. For 2g � 2C k > 0, we have a decomposition into a finite sum,

G .g;k/.v1; : : : ; vk/ D
X

l1;:::;lk�0

"1;:::;"k2¹0;
1
2 º

C .g;k/
�
l1
"1
� � �

lk
"k

� kY
iD1

B"i ;li .vi /:

The coefficients are given by the unfolded formula

C .g;k/
�
l1
"1
� � �

lk
"k

�
D

X
G2�.g;k/

.m;� /
2Col.G I.l ;"//

Y
v2V 0.G /

K
�mŒv�
� Œv�

� Y
v2Vt .G /

zK
�mŒv�
� Œv�

�

�

Y
v2Vtt .G /

C .0;3/
�mŒv�
� Œv�

� Y
v2Vo.G /

C .1;1/
�m.e0v /
�.e0v /

�
:

5. Critical behavior in the bending energy model (disregarding
nesting)

5.1. Phase diagram

For fixed values .n; ˛; g; h/, we introduce

uc D sup¹u � 0 W F �` <1º

in terms of the generating series of pointed disks defined in (2.6). If uc D 1 (resp.
uc < 1, uc > 1), we say that the model is at a critical (resp. subcritical, supercritical)
point. At a critical point, the generating series F .x/ D F.x/ has a singularity when
u ! 1�, and the nature (universality class) of this singularity is characterized by
some critical exponents. The phase diagram of the model with bending energy was
rigorously determined in [3, 5], and is plotted qualitatively in Figure 8, see also the
early works [31, 37] for ˛ D 1. We now review the precise results obtained in [3, 5].
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subcritical

supercritical

dense

dilute

generic

g

h

Figure 8. The phase diagram of the model with bending energy is qualitatively insensitive to
the value of n 2 .0; 2/ and ˛ not too large.

Three universality classes can be found in the model with bending energy: generic,
non-generic dilute and non-generic dense. For n > 0, we find a dense critical line,
which ends with a dilute critical point, and continues as a generic critical line. For
n D 0, only the generic critical line remains. As the generic universality class is
already present in maps without loops, we will not pursue its study. On the contrary,
the non-generic universality class is specific to the loop model, and it corresponds
to a regime where macroscopic loops continue to exist in maps of volume V !1
[23,37]. The remaining of the text aims at describing our various generating series on
the non-generic critical line.

A non-generic critical point occurs when C approaches the fixed point of & ,

�C D &.
�
C/ D

1

h.˛ C 1/
:

In this limit, the two cuts  and &./ merge at �C, and one can justify on the basis of
combinatorial arguments [5, Section 6] that � ! �� with

j��j < j
�
Cj and &.��/ ¤ 

�
�:

In terms of the parametrization x.v/, it amounts to letting T ! 0, and this is conve-
niently measured in terms of the parameter

q D e�
�
T ! 0:

After establishing the behavior of x.v/ and the special function ‡b.v/ in this regime
(see Appendix A for a summary), one can prove the following.
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Theorem 5.1 ([5]). Assume ˛ D 1, and introduce the parameter

� D 1 � 2h�� D 1 �
��
�C
:

There is a non-generic critical line, parametrized by � 2 .�min; �max�:

g

h
D

4.�b
p
2C n �

p
2 � n/

�2.b2 � 1/
p
2 � nC 4�b

p
2C n � 2

p
2 � n

;

h2 D
�2b

24
p
4 � n2

�2 b.1 � b2/
p
2C n � 4�

p
2 � nC 6b

p
2C n

��2.1 � b2/
p
2 � nC 4�b

p
2C n � 2

p
2 � n

:

It realizes the dense phase of the model. The endpoint

�max D
1

b

r
2 � n

2C n

corresponds to the fully packed model g D 0, with the critical value h D 1

2
p
2
p
2Cn

.
The endpoint

�min D

p
6C n �

p
2 � n

.1 � b/
p
2C n

is a non-generic critical point realizing the dilute phase, and it has coordinates

g

h
D 1C

r
2 � n

6C n
; h2 D

b.2 � b/

3.1 � b2/.2C n/

�
1 �

1

4
p
.2 � n/.6C n/

�
:

The fact that the non-generic critical line ends at �max < 2 is in agreement with
j��j < j

�
Cj.

Theorem 5.2 ([5]). There exists ˛c.n/ > 1 such that, in the model with bending
energy ˛ < ˛c.n/, the qualitative conclusions of the previous theorem still hold.
For ˛ D ˛c.n/, only a non-generic critical point in the dilute phase exists, and for
˛ > ˛c.n/, non-generic critical points do not exist.

Theorem 5.3 ([3]). Assume .g; h/ are chosen such that the model has a non-generic
critical point for vertex weight u D 1. When u < 1 tends to 1, we have

q �
�1 � u
q�

�c
with the universal exponent

c D

´
1
1�b

; dense;

1; dilute:
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The non-universal constant reads, for ˛ D 1,

q� D

8<: 6.nC2/
b

�2.1�b/2
p
2CnC2�.1�b/

p
2�n�2

p
2Cn

�2b.1�b2/
p
2Cn�4�.1�b2/

p
2�nC6b

p
2Cn

; dense;
24

b.1�b/.2�b/
; dilute:

For ˛ ¤ 1, its expression is much more involved, see [3, Appendix E].

Actually, the following assertion is proved in [3, Appendices E and J].

Lemma 5.4 ([3]). The function u 7! q is delta-analytic.

5.2. Principles

5.2.1. Small and large boundaries. The generating series of connected maps of
genus g in theO.n/model with fixed volume V and fixed boundary lengths `1; : : : ; `k
reads

ŒuV �F
.g;k/
`1;:::;`k

D

I
du

2i� uVC1

I kY
iD1

dxi x
`i
i

2i�
F.g;k/.x1; : : : ; xk/:

The contour for integration of xi is originally around1 with negative orientation, but
we can move it to surround  . At a critical point, the asymptotics when V !1 are
dominated by the behavior of the generating series at u D 1. If we want to keep `i
finite, we can leave the contour integral over xi in a neighborhood of 1, and by
setting xi D x.12 C �wi /, we trade it for a contour surrounding wi D w�1. If we want
to let `i ! 1 at a rate controlled by V ! 1, the asymptotics will be dominated
by the behavior of the generating series for xi near the singularity C ! �C, i.e., for
xi D x.�wi / with wi of order 1. The same principle holds for any of the unrefined
generating series F and FFF� .

If Hs.x1 : : : ; xk/ is a refined generating series of maps with k boundaries (with s
a Boltzmann weight for certain separating loops), we can compute the number of
such maps having fixed volume V , fixed number P of such separating loops, and
fixed boundary perimeters, byh

sPuV
Y
i

x
�.`iC1/
i

i
Hs.x1; : : : ; xk/

D

I
ds
2i�

I
du
2i�

I h kY
iD1

x
`i
i dxi
2i�

iHs.x1; : : : ; xk/

sPC1uVC1
:

In the regime P;V !1, the contour integral over s will be determined by the behav-
ior of the generating series near the dominant singularity in the variable s, and u! 1.
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To summarize, we need to study the behavior of generating series approaching
criticality, i.e., q D e�

�
T with � D iT ! 0, while x D x.v/ with v D "C �w and w

is in a fixed compact. With " D 1
2

we have access to the regime of finite (also called
“small”) boundaries, and with " D 0 to the regime of large boundaries.

5.3. Organization of the computations

In the present Section 5, we will study maps without marked points. The modifications
arising to include a number k0 > 0 of marked points will be discussed in Section 7.3.
We will find, as can be expected, that marked points behave – as far as critical expo-
nents are concerned – as small boundaries.

Our first goal is to determine the behavior of the generating series of maps F.g;k/

and of usual maps with renormalized face weights F .g;k/. To obtain it, we first deter-
mine the behavior of the building blocks of Propositions 4.11 and 4.12 in the next
paragraph, and then study the behavior of the sum over colorings and graphs to derive
the behavior of C.g;k/ and C .g;k/ (Lemma 5.8). This step is rather technical, and the
result for the critical exponent for C’s and C ’s is not particularly simple. Yet, the final
result for the critical behavior of the generating series of maps themselves turns out
to be much simpler (Theorem 5.9). We recall that the C’s do not have a combina-
torial interpretation in terms of maps, so this technical part should only be seen as
a (necessary) intermediate step to arrive to the F’s and F ’s.

5.4. Preliminaries

5.4.1. Building blocks. We first examine the behavior at criticality, i.e., when q D
e�

�
T ! 0, of the various bricks appearing in Proposition 4.11. Let us define

"; "0 2
°
0;
1

2

±
; "˚ "0 WD

´
0 if " D "0;
1
2

if " ¤ "0;

and for "; �; � 0 2 ¹0; 1
2
º,

f ."; �; � 0jB/ WD BŒ."˚ �/C ."˚ � 0/�C
�
d
b

2
� 1

�
.1 � 2"/;

with d D 1 in the dense phase, and d D �1 in the dilute phase. We give its table of
values (dense on the left, dilute on the right) for B D b:

� C � 0 0 1
2

1 � C � 0 0 1
2

1

" D 0 b
2
� 1 b � 1 3b

2
� 1 " D 0 �

b
2
� 1 �1 b

2
� 1

" D
1
2

b b
2

0 " D
1
2

b b
2

0
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Lemma 5.5. In the critical regime � D iT with T ! 0C, we have for the building
blocks of the generating series of maps in the bending energy model

K
�
l
"
m
�
m0

� 0

�
D

��
T

�2.mCm0�l/C1
qf .";�;�

0jb/
®
K�
�
l
"
m
�
m0

� 0

�
CO.qb/

¯
;

zK
�
l
"
l 0

"
m
�

�
D

��
T

�2.m�l�l 0/�1
qf .";";� jb/

®
zK�
�
l
"
m
�
m0

� 0

�
CO.qb/

¯
;

C.0;3/
�
0
"
0
"
0
"

�
D

��
T

��3
qf .";";"jb/

®
C.0;3/�

�
0
"
0
"
0
"

�
CO.qb/

¯
;

C.1;1/
�
l
"

�
D

��
T

��.2lC1/
qf .";";"jb/

®
C.1;1/�

�
l
"

�
CO.qb/

¯
;

B";l.�' C "0/ D
��
T

�2lC2
qb."˚"

0/
®
B�;.2lC1/
"˚"0;l

.�'/CO.qb/
¯
:

And, for the building blocks of the generating series of usual maps with renormalized
face weights

K
�
l
"
m
�
m0

� 0

�
D

��
T

�2.mCm0�l/C1
qf .";�;�

0j 12 /
®
K�

�
l
"
m
�
m0

� 0

�
CO.qb/

¯
;

zK
�
l
"
l 0

"
m
�

�
D

��
T

�2.m�l�l 0/�1
qf .";";� j

1
2 /
®
zK�
�
l
"
m
�
m0

� 0

�
CO.qb/

¯
;

C .0;3/
�
0
"
0
"
0
"

�
D

��
T

��3
qf .";";"j

1
2 /
®
C .0;3/�

�
0
"
0
"
0
"

�
CO.qb/

¯
;

C .1;1/
�
l
"

�
D

��
T

��.2lC1/
qf .";";"j

1
2 /
®
C .1;1/�

�
l
"

�
CO.qb/

¯
;

B";l.�' C "
0/ D

��
T

�2lC2
q
1
2 ."˚"

0/
®
B
�;.2lC1/

"˚"0;l
.�'/CO.q

1
2 /
¯
:

We will do many computations just for the C.g;k/’s, but they will work analogously
for the C .g;k/’s, just by specializing b D 1

2
in all the critical exponents ofK, zK, C.0;3/,

C.1;1/ given by some f ."; �; � 0jb/, and b D 1
2

in the exponent of B to obtain B.
The expressions for the leading order coefficients – here denoted by � – are pro-

vided in Appendix E. They are non-zero and satisfy the same selection rules as the
unstarred quantities on the left-hand side. An interesting feature of the result is that,
in the formula of Proposition 4.11 (resp. Proposition 4.12), the contribution to C.g;k/

(resp. C .g;k/) of a colored graph .G ; � / has order of magnitude qf .G ;� / with

f .G ; � / D
X

v2V.G /

f .� Œv�jB/;

where B D b (resp. B D 1
2

). We remark that f .� Œv�jB/ does not depend on the vertex
being terminal, bi-terminal, having a loop or not. Since q D e�

�
T ! 0when T ! 0C,

the leading terms in C.g;k/ and C .g;k/ are given by the colored graphs minimizing
f .G ; � /. We will study the minimizing graphs and their exponents in Section 5.5.
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5.4.2. Minimization over colorings.

Lemma 5.6. For a given graph G of genus g with k legs, the coloring assigning 0 to
each edge realizes the minimum of f .G I � /, which is

.2g � 2C k/
�
d
b

2
� 1

�
:

Proof. Every f ."; �; � 0/ realizes its minimum .db
2
� 1/ at ."; �; � 0/ D .0; 0; 0/, and

the coloring with � Œv� D .0; 0; 0/ for all v 2 V.G / receives a non-zero contribution at
this order.

5.4.3. Study of a critical exponent. Let bxc denote the unique integer such that
bxc � x < bxc C 1. Let us define

ˇ1.i1=2/ WD
j i1=2
2

k
C 2ıi1=2;1;

ˇ2.g; k; i0/ WD 2g � 2C
jk
2

k
C

j i0 C .k mod 2/
2

k
:

We then define a function of three integers g, i0, i1=2 such that 2g� 2C i0C i1=2 � 1:

ˇ.g; i0; i1=2jB/

D

´
ˇ1.i1=2/

B
2
C ˇ2.g; i0C i1=2; i0/.db2 � 1/ if ˇ2.g; i0Ci1=2; i0/ > 0;

0 otherwise:
(5.1)

It will be useful later to know what happens when we decrement i0 and increment i1=2.

Lemma 5.7. For i0 > 0, we have

ˇ.g; i0; i1=2jB/C� D ˇ.g; i0 � 1; i1=2 C 1jB/;

where

� D

8̂̂̂̂
<̂̂
ˆ̂̂̂:
2B
2
� .db

2
� 1/ if i1=2 D 0;

�
B
2

if i1=2 D 1;

�.db
2
� 1/ if i1=2 > 0 even;

B
2

if i1=2 > 1 odd;

except for the exceptional cases .g;k/D .0;3/, .0;4/ and .g;k; i0/D .1;1;1/, .0;5;1/.
In the last cases, we obtain

� D

8<:�.db2 � 1/ if .g; k/ D .1; 1/; i0 D 1;

�2B
2
� .db

2
� 1/ if .g; k/ D .0; 5/; i0 D 1;
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and, in the other exceptional cases, where some configurations .i0; i1=2/ give vanish-
ing C.g;k/, we only record the variations between configurations giving non-zero C’s:

• ˇ.0; 3; 0/ � .db
2
� 1/ D ˇ.0; 0; 3/ D 0,

• ˇ.0; 4; 0/C B
2
� .db

2
� 1/ D ˇ.0; 2; 2/,

• ˇ.0; 2; 2/ � B
2
� .db

2
� 1/ D ˇ.0; 0; 4/ D 0.

Proof. The exceptional cases can be easily checked with the expression for ˇ. For the
general situation, we separate cases according to the parity of i0 and k, and we check
first how ˇ2.g; i0 C i1=2; i0/ varies depending on the parity of i1=2:

• If i1=2 is even, then ˇ2.g; k; i0 � 1/ D ˇ2.g; k; i0/ � 1.

• If i1=2 is odd, then ˇ2.g; k; i0 � 1/ D ˇ2.g; k; i0/.

For the variation of ˇ1.i1=2/, we distinguish four cases:

• ˇ1.1/ D ˇ1.0/C 2 D 2.

• ˇ1.2/ D ˇ1.1/ � 1 D 1.

• If i1=2 > 0 is even, then ˇ1.i1=2 C 1/ D ˇ1.i1=2/.

• If i1=2 > 1 is odd, then ˇ1.i1=2 C 1/ D ˇ1.i1=2/C 1.

5.5. Coefficients C and C

Lemma 5.8. Let g � 0 and k � 1 such that 2g � 2C k > 0. Let "1; : : : ; "k 2 ¹0; 12º
be fixed, and denote by i0 (resp. i1=2) the number of "i D 0 (resp. D 1

2
). Then, in the

critical regime � D iT with T ! 0C, we obtain

C.g;k/
�
l1
"1
� � �

lk
"k

�
D

��
T

��PkiD1.2liC1/
qˇ.g;i0;i1=2jb/

�
C.g;k/�

�
l1
"1
� � �

lk
"k

�
CO.q

b
2 /
�
;

C .g;k/
�
l1
"1
� � �

lk
"k

�
D

��
T

��PkiD1.2liC1/
qˇ.g;i0;i1=2j

1
2 /
�
C
.g;k/
�

�
l1
"1
� � �

lk
"k

�
CO.q

b
2 /
�
;

where the leading coefficients indicated with � are non-zero.

Proof. We shall do the reasoning for C.g;k/, i.e., for B D b, but all the comparisons
we do will work also for the special case of B D 1

2
, so the final scaling exponent will

be the same for C .g;k/ specifying B D 1
2

, instead of B D b. For simplicity, we will
write in this proof

ˇ.g; i0; i1=2/ � ˇ.g; i0; i1=2jb/:

The determination of the exponent of �
T

will be addressed in the third part of the proof.
For the moment, we only focus on the powers of q. Since we know C.g;k/Œl1"1 � � �

lk
"k � is
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invariant by permutation of the pairs .li ; "i /kiD1, the scaling exponent will only depend
on g, i0 and i1=2. In the case i1=2 D 0, we have

ˇ.g; k; 0/ D
�
2g � 2C

jk
2

k
C

jk C .kmod 2/
2

k��
d
b

2
� 1

�
D .2g � 2C k/

�
d
b

2
� 1

�
;

so the claim is correct according to Lemma 5.6.
We prove all the other cases by induction on 2g � 2C k, starting by the two base

cases with 2g � 2C k D 1. In both base cases there is only one graph with a single
vertex.

Case .g; k/ D .0; 3/. Remember C.0;3/Œl1"1
l2
"2
l3
"3 � D 0 in the case we do not have "1 D

"2 D "3. So the only case to consider is i1=2 D 3, and we have f .1
2
; 1
2
; 1
2
/D 0, which

is equal to ˇ.0; 0; 3/ since ˇ2.0; 3; 0/ D �1 < 0.

Case .g; k/ D .1; 1/. Remember the color of a loop should be identical to the color
of the other edge. So in the case i1=2 D 1, we get f .1

2
; 1
2
; 1
2
/ D 0, which is equal to

ˇ.1; 0; 1/ since ˇ2.1; 1; 0/ D 0.

Now we will prove the result for the cases with 2g� 2C k, supposing it is true for
all cases .xg; xk/with 2xg� 2C xk < 2g� 2C k. We can decompose graphs G 2 � .g;k/ in
terms of a graph P which consists of only one trivalent vertex v0 without loops, and
either one graph zG 2 � .g�1;kC1/, or two graphs G 0 2 � .g

0;k0C1/ and G 00 2 � .g
00;k00C1/,

with g0 C g00 D g and k0 C k00 D k � 1, excluding the cases .g0; k0/ D .0; 0/ and
.g00; k00/ D .0; 0/.

The two last legs of P are shared either with two legs of zG , or with one in G 0 and
one in G 00. Consider the following decompositions zk D Qi0 C Qi1=2, k0 D i 00 C i

0
1=2

and
k00 D i 000 C i

00
1=2

, with zk C 2 D k C 1 and .k0 C 1/C .k00 C 1/ D k C 1, where zk, k0

and k00 correspond to the number of legs which are not shared with P in the respective
subgraphs zG , G 0 and G 00.

In order to extend a coloring for the corresponding subgraph zG , or G 0 and G 00

to a coloring of the whole G , we will pick � Œv0� D .�0; �1; �2/ in a compatible
way, i.e., the colorings �1 and �2 of the two legs of P , which are shared with the
corresponding subgraphs, will coincide with the given ones for these legs on the sub-
graphs. We will make these choices to minimize f .G I � /, which will be f .� Œv0�/CP

v2V. zG / f .z� Œv�/ or f .� Œv0�/C
P

v2V.G 0/ f .�
0Œv�/C

P
v2V.G 00/ f .�

00Œv�/.
For every configuration i0 C i1=2 D k, we will first build a graph with a coloring

which is compatible with the fixed colorings of the legs .G ;� /2 � .g;k/ � Col.G I .l ;"//
from the ones from previous induction steps such that f .G I � / D ˇ.g; i0; i1=2/, i.e.,
a graph realizing the desired value. Secondly, we will have to prove that there is no
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0

1
2

1
2

0

1
2

.i0; i1=2/ D .2; 2/

1
2

1
2

1
2

1
2

1
2

.i0; i1=2/ D .0; 4/

Figure 9. Case .g; k/ D .0; 4/.

other . xG ; x� / 2 � .g;k/ � Col.G I .l ; "// with f . xG I x� / < ˇ.g; i0; i1=2/, i.e., ˇ.g; i0; i1=2/
is actually the minimum.

Remember that the cases with i0 D k and i1=2 D 0 were already checked, so we
do not consider them in the following.

First part: special cases. We will deal first with the two special cases .g; k/D .0; 4/,
.0; 5/.

� .g; k/D .0; 4/. The graphs in � .0;4/ have only two vertices, one terminal and one bi-
terminal. This implies that the only options with C.0;4/Œl1"1 � � �

l4
"4 � ¤ 0 are i0 D 0; 2; 4.

We show in Figure 9 the graphs with a suitable coloring which realize the desired
value in every remaining case.

Observe that G 00 is the only graph in � .0;3/. Since i 00
1=2
D 2 and the only vertex

is biterminal, we have to set �2 D 1
2

here. We already checked that f .G 00I � 00/ D
ˇ.0; 0; 3/ D 0. Therefore, for .i0; i1=2/ D .2; 2/ we obtain f .G I � / D f .0; 0; 1

2
/ D

db
2
� 1 C b

2
D ˇ.0; 2; 2/ and for .i0; i1=2/ D .0; 4/, f .G I � / D f .1

2
; 1
2
; 1
2
/ D 0 D

ˇ.0; 0; 4/, as we wanted.

� .g; k/ D .0; 5/. For every possible .i0; i1=2/, we choose the graph with the corre-
sponding coloring shown in Figure 10.

Observe that G 00 2 � .0;4/, which also makes the choice of �2 special.

– If i0D 4 and i1=2D 1, with the chosen graph we can only set �2D 1
2

. By induction
hypothesis, we have f .G 00I � 00/ D ˇ.0; 2; 2/ D b

2
C db

2
� 1. Therefore,

f .G I � / D f
�
0; 0;

1

2

�
C ˇ.0; 2; 2/ D .dC 1/

b

2
� 1C .dC 1/

b

2
� 1

D 2
b

2
C 2

�
d
b

2
� 1

�
D ˇ.0; 4; 1/:

– If i0 D 3 and i1=2 D 2, we can choose �2 D 0. By induction hypothesis, we have
f .G 00I � 00/ D ˇ.0; 2; 2/ D db

2
� 1C b

2
. Therefore,

f .G I � / D f .0; 0; 0/C ˇ.0; 2; 2/ D d
b

2
� 1C

b

2
C d

b

2
� 1 D ˇ.0; 3; 2/:
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0

0

1
2

1
2

1
2

1
2

1
2.i0; i1=2/ D .2; 3/

1
2

1
2

0

0

1
2

1
2

1
2.i0; i1=2/ D .1; 4/

0

0

1
2

1
2

0

0

0.i0; i1=2/ D .4; 1/

0

0

0

0

1
2

1
2

1
2.i0; i1=2/ D .3; 2/

1
2

1
2

1
2

1
2

1
2

1
2

1
2.i0; i1=2/ D .0; 5/

Figure 10. Case .g; k/ D .0; 5/.

– If i0 D 2 and i1=2 D 3, we can only choose �2 D 1
2

. By induction hypothesis, we
have f .G 00I � 00/ D ˇ.0; 0; 4/ D 0. Therefore,

f .G I � / D f
�
0; 0;

1

2

�
D .dC 1/

b

2
� 1 D ˇ.0; 2; 3/:

– If i0 D 1 and i1=2 D 4, we can only choose �2 D 0. Therefore,

f .G I � / D f
�1
2
;
1

2
; 0
�
C ˇ.0; 2; 2/ D

b

2
C
b

2
C d

b

2
� 1 D ˇ.0; 1; 4/:

– If i0 D 0 and i1=2 D 5, we can only choose �2 D 1
2

. Thus

f .G I � / D f
�1
2
;
1

2
;
1

2

�
C ˇ.0; 0; 4/ D 0 D ˇ.0; 0; 5/:

First part: General cases. For the general cases with .g; k/ ¤ .0; 4/, .0; 5/, we will
consider four cases. If k > 2, we will be automatically in one of the first two cases.

Case I: i0 � 2 (see Figure 11). We will choose the graph G constructed from G 0

and G 00, with k0 D i 00 D 1 and gD 0. Observe that G 0 has 2 legs, both with coloring 0.
In this case, v0 is a terminal vertex, so for the contribution to be non-zero, we have
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0

0

�2 g
³
k00 D k � 2

Figure 11. Case i0 � 2.

1
2

1
2

�2 g
³
k00 D k � 2

Figure 12. Case i1=2 � 2.

�0 D �1 and we know that �1 D 0 because the leg is shared with G 0. Note that i0 D
i 000 C 2 and i1=2 D i 001=2.

In the general case, we can always choose �2 D 0. By the induction hypothesis,
we can choose .G 00; � 00/ such that f .G 00I � 00/ D ˇ.g; i 000 C 1; i

00
1=2
/. Therefore,

f .G I � / D d
b

2
� 1C ˇ1.i

00
1=2/

b

2
C ˇ2.g; k00 C 1; i 000 C 1/

�
d
b

2
� 1

�
D ˇ1.i1=2/

b

2
C .ˇ2.g; k � 1; i0 � 1/C 1/

�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/:

The last step is a simple computation separating the cases where k � 1 is even and
odd.

Case II: i1=2 � 2 (see Figure 12). Again, we choose the graph G constructed from G 0

and G 00, with k0 D 1 and g D 0, but with i 0
1=2
D 1 because in this case we have no

assumption on i0. And again v0 is a terminal vertex, so for the contribution to be
non-zero, we have �0 D �1, but here �1 D 1

2
. Note that i0 D i 000 and i1=2 D i 001=2 C 2.

It will minimize to choose �2 D 1
2

, if i 00
1=2
D 1, and �2 D 0, otherwise. If i 00

1=2
D 1,

we have

f .G I � / D 0C ˇ1.2/
b

2
C ˇ2.g; k00 C 1; i 000 /

�
d
b

2
� 1

�
D ˇ1.i1=2/

b

2
C ˇ2.g; k � 1; i0/

�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/:

In the last step, we separate the cases where k � 1 is even and odd, and we use that
i0 C 3 D k to deduce the parity of i0 in every case. If i 00

1=2
¤ 1, we have

f .G I � / D
b

2
C ˇ1.i

00
1=2/

b

2
C ˇ2.g; k00 C 1; i 000 C 1/

�
d
b

2
� 1

�
D ˇ1.i

00
1=2 C 2/

b

2
C ˇ2.g; k � 1; i0 C 1/

�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/:
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1
2

1
2

0 1
2

Figure 13. Case .g; i0; i1=2/ D .1; 1; 1/.

1
20

0

0

g0

g00

Figure 14. Case g > 1, .i0; i1=2/ D .1; 1/.

The last step is again a simple computation separating cases according to the parity
of k � 1.

Case III: i0 D 1, i1=2 D 1. This is the remaining case of k D 2. Observe that here
g > 0, so that 2g � 2C 2 > 0. We distinguish two cases:

• g D 1 (see Figure 13). We choose the graph G constructed from zG with Qi D
Qi1=2 D 1. Since the vertex of zG is terminal in G , at least �1 or �2 should be
equal to 1

2
for the contribution of the graph to be non-zero. Actually, if we set

�1 D �2 D
1
2

, we get

f .G I � / D f
�
0;
1

2
;
1

2

�
C f

�1
2
;
1

2
;
1

2

�
D d

b

2
� 1C b D ˇ.1; 1; 1/:

• g > 1 (see Figure 14). We build G from G 0 and G 00 with k0 D i 0
1=2
D 1, g0 > 0,

k00 D 0 and g00 > 0, which we can choose because g > 1. Observe that if xg > 0,
then 2xg� 2C 1 > 0 and hence in our cases we will have ˇ2 > 0. Since i 00; i

00
0 D 0

and i0 D 1, �0 D 0 and we can choose �1 D �2 D 0.

Therefore,

f .G I � / D d
b

2
� 1C ˇ1.1/

b

2
C ˇ2.g0; 2; 1/

�
d
b

2
� 1

�
C ˇ1.0/

b

2

C ˇ2.g00; 1; 1/
�
d
b

2
� 1

�
D b C .2g � 2C 1/

�
d
b

2
� 1

�
D ˇ.g; 1; 1/:

Case IV: k D 1 (see Figure 15). The case .1; 1/ was already a base one, so here we
suppose g>1. We consider the case kD i1=2D 1. So �0D "1D 1

2
, and we construct G

from G 0 and G 00 with k0 D k00 D 0 and g0; g00 > 0 . We can choose �1 D �2 D 0.
Therefore,

f .G I � / D b C ˇ1.0/
b

2
C ˇ2.g0; 1; 1/

�
d
b

2
� 1

�
C ˇ1.0/

b

2
C ˇ2.g00; 1; 1/

�
d
b

2
� 1

�
D b C .2g � 2/

�
d
b

2
� 1

�
D ˇ.g; 0; 1/:
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0

0

1
2

g0

g00

Figure 15. Case k D 1.

Second part: disconnected cases. For the second part of the proof, we will check
that all other possible graphs and colorings for every case do not give a smaller expo-
nent. We first discuss the disconnected case, i.e., the case where G is constructed
from G 0 and G 00, so that G 0; G 00 62 � .0;2/ (see Figure 16). The cases with G 0 or G 00

in � .0;3/ or � .0;4/ will be considered separately because they will have some extra
restrictions to choose �1 and �2 and will be called the exceptional cases in this part.

�0

�2

�1 g0

g00
³
k00

³
k0

Figure 16. The graph G from G 0 and G 00.

Moreover, remember that a graph in � .0;5/ and with i0 D 0, i1=2 D 5 was also
giving the special value of ˇ2.0; 5; 0/ D 0 and hence ˇ.0; 0; 5/ D 0 automatically.
However, observe that when one of the pieces G 0 or G 00 is in � .0;5/, we will not have
any exceptional situation here because a graph in � .0;5/ with i 0

1=2
D 4 and �1 D 1

2
,

or i 00
1=2
D 4 and �2 D 1

2
will never be chosen to minimize; it will always be better to

choose �1 or �2 to be 0, and in this case it is possible.

Case �0 D 0. Let us check that choosing �1 D 0, if possible, always minimizes.
Observe that

f .0; 0; �2/ D f
�
0;
1

2
; �2

�
�
b

2
:

Then, making use of Lemma 5.7, we get

f .0; 0; �2/C ˇ.g0; i 00 C 1; i
0
1=2/ � f

�
0;
1

2
; �2

�
C ˇ.g0; i 00; i

0
1=2 C 1/:

Indeed, it is clear if i 0
1=2
¤ 1, and if i 0

1=2
D 1, we always have an equality because

f .0; 0; �2/C ˇ.g0; i 00 C 1; 1/ D f
�
0;
1

2
; �2

�
�
b

2
C ˇ.g0; i 00; 2/C

b

2
:
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The same argument works for �2. Now, we should check that the exceptional cases,
where we cannot choose �1 D �2 D 0, do not minimize further.

� If �1 D 1
2

, �2 D 0, .g0; k0 C 1/ D .0; 3/, i 0
1=2
D 2, we have

f .G I � / D
�
.dC 1/

b

2
� 1

�
C 0C ˇ.g; i0; i1=2 � 1/ D ıi1=2;3b C ˇ.g; i0; i1=2/;

where we have used that here i1=2 � 2.

� If �1 D 1
2

, �2 D 0, .g0; k0 C 1/ D .0; 4/, i 0
1=2
D 1, we have

f .G I � / D .dC 1/
b

2
� 1C

b

2
C

�
d
b

2
� 1

�
C ˇ1.i1=2 � 1/

b

2

C ˇ2.g; k � 4; i0 � 2/
�
d
b

2
� 1

�
D .ˇ1.i1=2 � 1/C 2/

b

2
C .ˇ2.g; k � 4; i0 � 2/C 2/

�
d
b

2
� 1

�
D .ˇ1.i1=2 � 1/C 2/

b

2
C .ˇ2.g; k; i0/ � 1/

�
d
b

2
� 1

�
� ˇ.g; i0; i1=2/:

In the last step we have used that ˇ1.i1=2 � 1/C 2 > ˇ.i1=2/.

� If �1 D 1
2

, �2 D 0, .g0; k0 C 1/ D .0; 4/, i 0
1=2
D 3, we have

f .G I � / D
�
d
b

2
� 1C

b

2

�
C 0C ˇ1.i1=2 � 3/

b

2
C ˇ2.g; k � 4; i0/

�
d
b

2
� 1

�
D .ˇ1.i1=2 � 3/C 1/

b

2
C .ˇ2.g; k � 4; i0/C 1/

�
d
b

2
� 1

�
D .ˇ1.i1=2 � 3/C 1/

b

2
C .ˇ2.g; k; i0/ � 1/

�
d
b

2
� 1

�
� .ˇ1.i1=2/ � 1/

b

2
C .ˇ2.g; k; i0/ � 1/

�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/ �

�
d
b

2
� 1C

b

2

�
� ˇ.g; i0; i1=2/:

� The remaining cases with �1 D 1
2

, �2 D 1
2

consist of G 0; G 00 2 � .0;4/; G 0 2 � .0;3/

and G 0 2 � .0;4/, and symmetric ones by exchanging the roles of �1 and �2. They can
be checked easily from the results for the base cases .0; 3/ and .0; 4/.

Choosing �1 D �2 D 0 for the non-exceptional cases, we obtain

f .G I � / D
�
d
b

2
� 1

�
C ˇ.g0; i 00 C 1; i

0
1=2/C ˇ.g � g

0; i 000 C 1; i
00
1=2/

D .ˇ1.i
0
1=2/C ˇ1.i

00
1=2//

b

2

C .ˇ2.g0; k0 C 1; i 00 C 1/C ˇ2.g
00; k00 C 1; i 000 C 1/C 1/

�
d
b

2
� 1

�
:
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On the one hand, separating cases according to the parity of k0 and k00, and the parity
of i 00 and i 000 , we check that

ˇ2.g0; k0 C 1; i 00 C 1/C ˇ2.g
00; k00 C 1; i 000 C 1/C 1

� ˇ2.g0 C g00; k0 C k00 C 1; i 00 C i
00
0 C 1/

D ˇ2.g; k; i0/; (5.2)

and hence with this part we cannot minimize further.
On the other hand, distinguishing cases according to the parity of i 0

1=2
, i 00
1=2

and
i1=2 D i

0
1=2
C i 00

1=2
, and considering the special cases with some of them equal to 1,

we see that ˇ1.i 01=2/C ˇ1.i
00
1=2
/ D ˇ1.i1=2/ � 1, if both i 0

1=2
and i 00

1=2
are odd and> 1,

and ˇ1.i 01=2/C ˇ1.i
00
1=2
/ � ˇ1.i1=2/ otherwise.

Finally, we check easily that in the case of odd i 0
1=2
; i 00
1=2

> 1, where we have
minimized ˇ1 by 1, we lie in the cases with ˇ2.g0; k0 C 1; k00 C 1/C ˇ2.g

00; k00 C 1;

k000 C 1/C 1 < ˇ2.g; k; i0/. Therefore, we also do not minimize globally, i.e.,

f .G I � / � ˇ.g; i0; i1=2/;

since �b
2
> db

2
� 1 and thus, with a minimizing purpose, we prefer ˇ2 C 1 to ˇ1 � 1.

Case �0 D 1
2

. As in the previous cases, it can be checked first that the exceptional
cases do not minimize further. Let us check now which �1 we should choose to mini-
mize, making use of Lemma 5.7,

f
�1
2
; 0; �2

�
C ˇ1.g0; i 00 C 1; i

0
1=2/

D f
�1
2
;
1

2
; �2

�
C
b

2
C ˇ1.g0; i 00; i

0
1=2 C 1/ ��:

If i 0
1=2
¤ 1,� � b

2
and hence �1 D 0minimizes. But, if i 0

1=2
D 1,�D �b

2
and hence

�1D
1
2

is the minimizing choice. By the symmetry of the situation, the same argument
works for the choice of �2 depending on i 00

1=2
.

� i 0
1=2
D i 00

1=2
D 1. Using inequality (5.2), we have

f .G I � / D 0C ˇ.g0; i 00; i
0
1=2 C 1/C ˇ.g

00; i 00; i
0
1=2 C 1/

D ˇ1.2/b C .ˇ2.g0; k0 C 1; i 00/C ˇ2.g
00; k00 C 1; i 000 //

�
d
b

2
� 1

�
� ˇ1.3/

b

2
C .ˇ2.g; k; i 00 C i

00
0 � 1/ � 1/

�
d
b

2
� 1

�
� ˇ1.3/

b

2
C ˇ2.g; k; i 00 C i

00
0 /
�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/:



G. Borot and E. Garcia-Failde 256

� i 0
1=2
D 1, i 00

1=2
¤ 1 (and the analogous case i 0

1=2
¤ 1, i 00

1=2
D 1). Again using (5.2),

we obtain

f .G I � / D
b

2
C ˇ.g0; i 00; i

0
1=2 C 1/C ˇ.g

00; i 000 C 1; i
00
1=2/

D
b

2
C .ˇ1.2/C ˇ1.i

00
1=2//

b

2

C .ˇ2.g0; k0 C 1; i 00/C ˇ2.g
00; k00 C 1; i 000 C 1//

�
d
b

2
� 1

�
�
b

2
C ˇ1.i

00
1=2 C 2/

b

2
C .ˇ2.g; k; i 00 C i

00
0 / � 1/

�
d
b

2
� 1

�
� ˇ1.i1=2/

b

2
C ˇ2.g; k; i 00 C i

00
0 /
�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/:

� i 0
1=2
¤ 1, i 00

1=2
¤ 1. We have

f .G I � / D b C ˇ.g0; i 00 C 1; i
0
1=2/C ˇ.g

00; i 000 C 1; i
00
1=2/

D b C .ˇ1.i
0
1=2/C ˇ1.i

00
1=2//

b

2

C .ˇ2.g0; k0 C 1; i 00 C 1/C ˇ2.g
00; k00 C 1; i 000 C 1//

�
d
b

2
� 1

�
� .2C ˇ1.i

0
1=2/C ˇ1.i

00
1=2//

b

2
C .ˇ2.g; k; i 00 C i

00
0 C 1/ � 1/

�
d
b

2
� 1

�
� ˇ1.i

0
1=2 C i

00
1=2 C 1/

b

2
C .ˇ2.g; k; i 00 C i

00
0 /C 1 � 1/

�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/:

Second part: connected case. Now let us examine the case in which G is constructed
from zG (see Figure 17). Firstly, it can be easily checked separately that the special
cases with zG 2 � .0;3/, � .0;4/ do not minimize further.

Case �0 D 0. When we are not in the exceptional cases, we can always choose �1 D
�2 D 0 to minimize.

f .G I � / D
�
d
b

2
� 1

�
C ˇ1.Qi1=2/

b

2
C ˇ2.zg; zk C 2; Qi0 C 2/

�
d
b

2
� 1

�
D

�
d
b

2
� 1

�
C ˇ1.i1=2/

b

2
C ˇ2.g � 1; k C 1; i0 C 1/

�
d
b

2
� 1

�
D ˇ1.i1=2/

b

2
C .ˇ2.g; k C 1; i0 C 1/ � 1/

�
d
b

2
� 1

�
D ˇ.g; i0; i1=2/;

where for the last computation we distinguish cases according to the parity of k.
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�0

�2

�1

g � 1

µ
zk

Figure 17. The graph G from zG .

Case �0 D 1
2

. By the symmetry argument at the beginning of the proof, the only case
remaining to be checked is the one corresponding to i0 D 0 and i1=2 D k. By a com-
putation similar to the one in the previous case with �0 D 1

2
, we get that if Qi1=2 D 1,

.�1; �2/ D .1
2
; 0/ or .�1; �2/ D .0; 1

2
/ are the minimizing choices, and if Qi1=2 ¤ 1,

then we choose .�1; �2/ D .0; 0/ to minimize.

� Qi1=2 D 1 (k D i1=2 D 2).

f .G I � / D
b

2
C ˇ1.2/

b

2
C ˇ2.g � 1; 3; 1/

�
d
b

2
� 1

�
D
b

2
C ˇ1.2/

b

2
C .ˇ2.g; 2; 0/ � 1/

�
d
b

2
� 1

�
� ˇ1.2/

b

2
C ˇ2.g; 2; 0/

�
d
b

2
� 1

�
D ˇ.g; 0; 2/:

� Qi1=2 ¤ 1.

f .G I � / D b C ˇ1.Qi1=2/
b

2
C ˇ2.g � 1; k C 1; 2/

�
d
b

2
� 1

�
D b C ˇ1.i1=2 � 1/

b

2
C ˇ2.g � 1; k C 1; 2/

�
d
b

2
� 1

��
d
b

2
� 1

�
� ˇ1.i1=2/

b

2
C ˇ2.g; k; 0/

�
d
b

2
� 1

�
D ˇ.g; 0; i1=2/;

where the last inequality is simple to check distinguishing the usual cases.
This exhausts all possible graphs and shows that the colored graphs constructed

in the first part for each .g; i0; i1=2/ achieve the minimal value for the exponent, and
this value is given by ˇ.g; i0; i1=2/ of (5.1).

Third part. We show by induction on � D 2g � 2 C k � 1 that C.g;k/Œl1"1 � � �
lk
"k �

receives a power .�
T
/�

Pk
iD1.2`iC1/ as prefactor. It is already correct for .g; k/D .0; 3/

and .1; 1/ according to Lemma 5.5. If it is true for all .xg; xk/ such that 2xg� 2C xk < �,
then one easily checks with the recursive formula of Proposition 4.7, the behavior
of K and zK, and the induction hypothesis that it continues to hold for all .g; k/ such
that 2g � 2C k D �.

Together with the identification of the leading power of q in the previous steps,
this concludes the proof for the critical behavior of C.g;k/. The arguments are identical
for C .g;k/.

This completes the proof of Lemma 5.8.
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5.6. Generating series of maps

We arrive to the final result for the generating series of maps in the O.n/ model.

Theorem 5.9. Let k D k0 C k1=2 � 1 and g � 0 such that 2g� 2C k > 0. Let xj D
x.1
2
C �'j / for j 2 ¹1; : : : ; k1=2º, i.e., xj remains finite and away from Œ��; 

�
C�.

Let yj D x.� j / for j 2 ¹1; : : : ; k0º, i.e., yj scales with q ! 0 such that yj � C 2
O.q

1
2 /. Then, we have in the critical regime q ! 0:

F.g;k/.x1; : : : ; xk1=2 ; y1; : : : ; yk0/ D
��
T

�k
q.2g�2Ck/.d

b
2�1/�

k
2C

bC1
2 k1=2

�
�
F.g;k/� .'1; : : : ; 'k1=2 ;  1; : : : ;  k0/

CO.q
b
2 /
�
;

and for the generating series of usual maps with renormalized face weights:

F .g;k/.x1; : : : ; xk1=2 ; y1; : : : ; yk0/

D

��
T

�k
q
ž.g;k;k1=2/

�
F .g;k/
� .'1; : : : ; 'k1=2 ;  1; : : : ;  k0/CO.q

b
2 /
�

with
ž.g; k; k1=2/ D .2g � 2C k/

�
d
b

2
� 1

�
�
k

2
C
3

4
k1=2:

Recall that d D 1 in the dense phase, and d D �1 in the dilute phase.

The result for .g; k/D .0; 2/ is much easier to derive: this is done in Corollary 6.2
below, and the outcome is that Theorem 5.9 is still valid for .g; k/ D .0; 2/. Remark
that in this case, the first term in the critical exponent vanishes, so the result is the same
in the dense and dilute phase – only the relation between u and q differ, according to
Theorem 5.3.

Proof. First, we study the critical behavior of G.g;k/.v1; : : : ; vk/. From the decom-
position of Proposition 4.6, the critical behavior for its coefficients C.g;k/ from Lem-
ma 5.8 and the asymptotic behavior for B";l.v/ in the two regimes v D "0 C �' with
"0 D 0; 1

2
given in Lemma 5.5, it follows that each summand with "1; : : : ; "k fixed

behaves like q x̌.g;i0;i1=2;j0;j1=2jb/, with

x̌.g; i0; i1=2; j0; j1=2jb/ D ˇ.g; i0; i1=2jb/C .j0 C j1=2/
b

2
; (5.3)

where j0 C j1=2 D j¹j 2 ¹1; : : : ; kº W "j ¤ "0j ºj and, more concretely,

j1=2 WD
ˇ̌̌°
j 2 ¹1; : : : ; k1=2º W 0 D "j ¤ "

0
j D

1

2

±ˇ̌̌
;

j0 WD
ˇ̌̌°
j 2 ¹k1=2 C 1; : : : ; k1=2 C k0º W

1

2
D "j ¤ "

0
j D 0

±ˇ̌̌
:
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Since we are interested in the dominant behavior of G.g;k/..vi /
k
iD1/ with fixed k0

and k1=2, we need to decide which 0 � j0 � k0 and 0 � j1=2 � k1=2 minimize
x̌.g; i0; i1=2; j0; j1=2jb/. Observe that i0D k0� j0C j1=2 and i1=2D k1=2� j1=2C j0.
We have to take into account the already known behavior of ˇ.g; i0; i1=2jb/ varying i0
and i1=2 to find in the end the quadruple .i0; i1=2; j0; j1=2/ minimizing x̌.g; i0; i1=2;
j0; j1=2jb/ for fixed g, k0 and k1=2.

We will consider first the special base cases, where some configurations .i0; i1=2/
give vanishing C’s.

� .g; k/ D .0; 3/. Since the only configurations with C.g;k/ ¤ 0 are .i0; i1=2/ D .3; 0/
and .i0; i1=2/ D .0; 3/, we automatically have .j0; j1=2/ D .0; k1=2/ and .j0; j1=2/ D
.k0; 0/, respectively,

x̌.0; 3; 0; 0; k1=2jb/ D ˇ.0; 3; 0jb/C k1=2
b

2
� 0 � ˇ.0; 0; 3jb/C k0

b

2

D x̌.0; 0; 3; k0; 0jb/:

� .g; k/ D .0; 4/. First, similarly to the previous case, we have

x̌.0; 4; 0; 0; k1=2jb/ D ˇ.0; 4; 0jb/C k1=2
b

2
� 0 � ˇ.0; 0; 4jb/C k0

b

2

D x̌.0; 0; 4; k0; 0jb/:

The only possibility remaining to compare is .i0; i1=2/ D .2; 2/. Here we use

ˇ.0; 2; 2jb/ D ˇ.0; 4; 0jb/C 1C .1 � d/
b

2

from Lemma 5.7,

x̌.0; 2; 2; 2; k1=2jb/ D ˇ.0; 4; 0jb/C 1C .1 � d/
b

2
C .2C k1=2/

b

2

� x̌.0; 4; 0; 0; k1=2jb/;

x̌.0; 2; 2; 1; k1=2 � 1jb/ D ˇ.0; 4; 0jb/C 1C .1 � d/
b

2
C k1=2

b

2

� x̌.0; 4; 0; 0; k1=2jb/;

x̌.0; 2; 2; 0; k1=2 � 2jb/ D ˇ.0; 4; 0jb/C 1C .1 � d/
b

2
C .k1=2 � 2/

b

2

� x̌.0; 4; 0; 0; k1=2jb/:

Using again Lemma 5.7, observe that in all the remaining cases, for i0 > 0, we
have

ˇ.g; i0; i1=2jb/C� D ˇ.g; i0 � 1; i1=2 C 1jb/

with � � b
2

, except for i1=2 D 1.
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� We now justify that it is always better to decrease j0. If i1=2 ¤ 1,

x̌.g; i0 � 1; i1=2 C 1; j0; j1=2jb/ D ˇ.g; i0 � 1; i1=2 C 1jb/C .j0 C j1=2/
b

2

D ˇ.g; i0; i1=2jb/C�C .j0 C j1=2/
b

2

� ˇ.g; i0; i1=2jb/C .j0 C j1=2 � 1/
b

2

D x̌.g; i0; i1=2; j0 � 1; j1=2jb/:

The equality still holds for i1=2 D 1, more concretely,

x̌.g; i0 � 1; 2; j0; j1=2jb/ D ˇ.g; i0; 1jb/ �
b

2
C .j0 C j1=2/

b

2

D x̌.g; i0; 1; j0 � 1; j1=2jb/:

� Now, if i1=2 ¤ 1, it is also better to increase j1=2:

x̌.g; i0 � 1; i1=2 C 1; j0; j1=2jb/ D ˇ.g; i0; i1=2jb/C�C .j0 C j1=2/
b

2

� ˇ.g; i0; i1=2/C .j0 C j1=2 C 1jb/
b

2

D x̌.g; i0; i1=2; j0; j1=2 C 1jb/:

And if i1=2 D 1, it is better to increase j1=2 by 2:

x̌.g; k � 2; 2; j0; j1=2jb/ D ˇ.g; k; 0jb/ �
b

2
�

�
d
b

2
� 1

�
C .j0 C j1=2/

b

2

� ˇ.g; k; 0/C b C .j0 C j1=2jb/
b

2

D x̌.g; k; 0; j0; j1=2 C 2jb/:

Observe that in the key case i1=2 D 1, if we have j1=2 D k1=2 � 1, i.e., not the max-
imum but with no possibility of being increased by 2, we will always have j0 D 1

(i1=2 C 1 D 2), and if we decrease that before, we will not lie in the case i1=2 D 1

anymore. So this pathological case is not a real problem.
Therefore, the minimal exponent corresponds to the minimum j0 and the maxi-

mum j1=2, i.e., j0 D 0 and j1=2 D k1=2, and i0 D k and i1=2 D 0:

x̌.g; k; 0; 0; k1=2jb/ D ˇ.g; k; 0jb/C k1=2
b

2
D .2g � 2C k/

�
d
b

2
� 1

�
C k1=2

b

2
:

The final result follows from

F.g;k/.x.v1/; : : : ; x.vk//
� kY
iD1

x0.vi /

�
D G.g;k/.v1; : : : ; vk/;
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the critical behavior we just found for G.g;k/.v1; : : : ; vk/ and the asymptotic behavior
for x.v/ in the two regimes v D �' and v D 1

2
C �' given in Appendix B. The

resulting power of q is

.2g � 2C k/
�
d
b

2
� 1

�
C k1=2

b

2
�
1

2
k0

D .2g � 2C k0 C k1=2/
�
d
b

2
� 1

�
�
k0 C k1=2

2
C k1=2

b C 1

2
:

For the F ’s, the only differences compared to (5.3) are the factor 1
4

instead of b
2

in the total exponent for fixed j0, j1=2 and B D 1
2

instead of b in ˇ:

x̌
�
g; i0; i1=2; j0; j1=2

ˇ̌1
2

�
D ˇ

�
g; i0; i1=2

ˇ̌1
2

�
C .j0 C j1=2/

1

4
:

This is a particular case of the previous analysis, so the minimum of this exponent
is again reached when j0 D 0 and j1=2 D k1=2, and i0 D k and i1=2 D 0, and this
entails the claim. Since in this case, ˇ.g; k; 0jb/ D ˇ.g; k; 0j1

2
/, in the end only the

first difference matters.

6. Critical behavior of nestings in the bending energy model

6.1. Summary of strategy

Our first goal here is to determine the behavior of the generating series FFF of maps
realizing a given nesting graph � , without remembering the arm lengths – i.e., setting
s.e/ D 1 – and in absence of marked points. For this purpose, we perform a saddle
point analysis of the expression of Proposition 3.10 using the previous results on
the behavior of F , and of the generating series of cuffed cylinders yF.2/s and zF.2/s in
Section 6.2. The final result is Theorem 6.4 below. The second goal is to extend these
computations to the refined generating series FFF .g;k/

�;?;s of maps realizing a given nesting
graph. Here, we just need to repeat the computations of our first goal in presence of the
variable s, which roughly amounts to replacing b by b.s/ when necessary. The only
important difference is that we wish to extract the leading contribution containing the
dominant singularity in the variable s, and this sometimes brings some modification
to the hierarchy of dominant terms. The result is described in Section 6.3.

In Section 7.1, we convert the critical behavior of all those generating series into
asymptotics for fixed large volume V and fixed boundary perimeters .Li /i in the
regime of small or large boundaries. In Section 7.2, we also examine the critical
behavior in this setting of the probability of having fixed arm lengths P.e/ tend-
ing to 1 at rate ln V – which naturally appears from the analysis. In particular, we
compute the large deviation function for the arm lengths.
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Finally, in Section 7.3, we show that all these results continue to be valid in pres-
ence of marked points, provided one treats each marked point as a small boundary.

6.2. Cylinders and cuffed cylinders

In order to derive the critical behavior ofFFF .g;k/
�;?;s, we need one more ingredient, namely

the critical behaviors of zF.2/s .x1; x2/ and yF.2/s .x1; x2/.
For this purpose, we first derive the critical behavior of G.2/

s in the various regimes,
which can be straightforwardly obtained using the expression in Proposition 4.3 to-
gether with the asymptotic behavior of the special function ‡b in Lemma A.2 in
appendix.

Lemma 6.1. Set vi D "i C �wi for "i 2 ¹0; 12º. In the limit q ! 0, we have

G.2/
s .v1; v2/ D

.�
T
/2

4 � n2s2
q."1˚"2/b.s/

1 � qb.s/

�

´
Hb.s/;0.w1; w2/� q

b.s/Hb.s/C2;0.w1; w2/CO.q
2�b.s// if "1D "2;

Hb.s/; 12
.w1; w2/ � q

1�b.s/Hb.s/�2; 12
.w1; w2/CO.q/ if "1¤ "2;

where

Hb;0.w1; w2/ D .b � 1/
�sin�.b � 1/.w1 C w2/

sin�.w1 C w2/
�

sin�.b � 1/.w1 � w2/
sin�.w1 � w2/

�
C

cos�.w1 C w2/ cos�.b � 1/.w1 C w2/
sin2 �.w1 C w2/

�
cos�.w1 � w2/ cos�.b � 1/.w1 � w2/

sin2 �.w1 � w2/
;

Hb; 12
.w1; w2/ D 8b sin�bw1 sin�bw2:

The errors are uniform for w1, w2 in any compact and stable under differentiation.

The first consequence of this lemma is the critical behavior of the “singular part”
of F.2/s .x1; x2/ with respect to the variables u and .x1; x2/, which will be used in
Theorem 7.2 to obtain the asymptotics of the cylinder generating series for fixed large
volumes and fixed boundary perimeters. We warn the reader about two subtleties in
this analysis regarding what we mean by this “singular part”. The function F.2/s is
directly expressed in terms of G.2/

s in Proposition 4.3 up to a shift term. This shift
term can actually be dropped as far as fixing boundary perimeter is concerned, as it
gives a zero contribution when performing contour integrations of the formI

dx1 x
L1
1

2i�
dx2 x

L2
2

2i�
F.2/s .x1; x2/:
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Powers q0 should also be dropped from this “singular term” as they disappear in the
contour integrals

H du
2i�uVC1

F.2/s used to fix the volume; in such a case, the next-to-
leading order will play the leading role in the computations for fixed volume. Taking
these subtleties into account, the result for this “singular part” of F.2/s straightfor-
wardly follows from Lemma 6.1 and the behavior of x.v/ given in Lemma B.3 in
appendix.

Corollary 6.2. Set xi D x."i C �'i / for "i 2 ¹0; 12º. In the limit q! 0, the singular
parts (for this we use the sign�) with respect to the variables u, x1, x2 of the cylinder
generating series are

F.2/s .x1; x2/ �
.�
T
/2 q

ž.0;2/.s;"1;"2/

1 � qb.s/

�
®
F.2/s � .'1; '2/C q

b.s/F.2/s ��.'1; '2/CO.q
min.2�b.s/;2b.s///

¯
;

F .2/.x1; x2/ �
.�
T
/2 q

ž.0;2/.1;"1;"2/

1 � q
1
2

�
®
F.2/sD0�.'1; '2/C q

1
2 F.2/sD0��.'1; '2/CO.q/

¯
;

where

ž.0;2/.s; "1; "2/ D

8̂̂<̂
:̂
�1 if "1 D "2 D 0;
b.s/�1
2

if "1 ¤ "2;

b.s/ if "1 D "2 D 1
2
;

F.2/s � D
1

4 � n2s2
Hb.s/;"1˚"2.'1; '2/

.x�"1/
0.'1/.x�"2/

0.'2/
;

and for "1 D "2,

F.2/s ��.'1; '2/ D
1

4 � n2s2
�Hb.s/C2;0.'1; '2/

.x�"1/
0.'1/.x�"2/

0.'2/
:

The value of F.2/s �� for "1 ¤ "2 will be irrelevant.

The second consequence of Lemma 6.1 is the critical behavior of the generat-
ing series of cuffed cylinders yF.2/s and zF.2/s which appear in the evaluation of FFF via
Proposition 3.10.

Lemma 6.3. Let xj D x."j C �'j / for j D 1; 2, and consider the critical regime
q ! 0. Let H .x/ be a generating series which is holomorphic for x 2 C n Œ�; C�

such that H .x/ 2 O. 1
x2
/ when x!1, and when x D x."C �'/ admits the critical

behavior

H .x/ D
��
T

�C
q
3
2 "
®
H ";�.'/CO.q

b/
¯
;
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where C stands for an arbitrary real number. When computing the integralI


dx1
2i�

H .x1/ yF.2/s .x1; x2/; (6.1)

the relevant singular part (for this we use the sign�) of yF.2/s is

yF.2/s .x1; x2/ � q
y~."2/

®
yF.2/sI"2;�.'1; '2/CO.q

b.s//
¯

with "1 D 0 and the exponent

y~."2/ D

´
�
1
2

if "2 D 0;
b.s/
2

if "2 D 1
2
:

Likewise, let zH .x1;x2/ be a generating series which is holomorphic for .x1;x2/ 2
.C n Œ�; C�/2 and such that zH .x1; x2/ 2O.x

�2
1 x�22 / when xi !1, and admitting

the following critical behavior when xj D x."j C �'j /:

zH .x1; x2/ D
��
T

�C
q
3
2 ."1C"2/

®
zH "1;"2;�.'1; '2/CO.q

b/
¯
;

where C is an arbitrary number. When computing the contour integralI


dx1
2i�

I


dx2
2i�
zH .x1; x2/ zF.2/s .x1; x2/; (6.2)

the singular part of zF.2/s is

zF.2/s .x1; x2/ � zF.2/s � .'1; '2/CO.q
b.s//

with "1 D "2 D 0.

Proof. We shall estimate the contour integrals (6.1) and (6.2) in the regime q! 0 by
the steepest descent method. In particular, we will have to determine which region of
the complex plane gives the dominant contribution of the integral, and the proof will
show that it is always the vicinity of �C. It is however convenient to first transform
the expressions of yF.2/s and zF.2/s .

Using @xR.x; y/ D A.x; y/, evaluation (4.3) of the contour integral of a func-
tion against A.x; y/ and the definition of G.2/

s .v1; v2/ in Proposition 4.3, setting
xi D x.vi / and analytically continuing in .v1; v2/, we obtain

yF.2/s .x1; x2/ D s

I


dy
2i�

R.x1; y/F.2/s .y; x2/

D s

Z x1

dzx1

I


dy
2i�

A.zx1; y/F.2/s .y; x2/C C.x2/
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D �

Z x1

dzx1 ns & 0.zx1/F.2/s .&.zx1/; x2/C C.x2/

D ns

Z v.x1/

dzv1
G.2/
s .� � zv1; v2/

x0.v2/

C
ns

4 � n2s2

� 2

x2 � &.x1/
C

ns & 0.x2/

&.x2/ � &.x1/

�
C C.x2/;

where we stress that C.x2/ does not depend on x1, and for this reason will disappear
when performing contour integration against H .x1/ as H .x1/ 2 O.x

�2
1 /. We can

then do a partial fraction expansion with respect to x1,

1

x2 � &.x1/
D
�& 0.x2/

x1 � &.x2/
C

1

x2 � &.1/
;

& 0.x2/

&.x2/ � &.x1/
D �

1

x1 � x2
C

& 0.x2/

&.x2/ � &.1/
:

Therefore,I


dx1
2i�

H .x1/ yF.2/s .x1; x2/ D ns

I


dx1
2i�

H .x1/

Z v.x1/ dzv1 G.2/
s .� � zv1; v2/

x0.v2/

C
ns

4 � n2s2
.2& 0.x2/H .&.x2//C nsH .x2//: (6.3)

The second term is of order of magnitude q
3
2 "2 . To examine the behavior of the

first term, we fix the value of "2 2 ¹0; 12º. When the variable x1 is in the regime

x1 D x."1 C �'1/;

the integrand (including dx1) is of order of magnitude

q.
3
2 /"1C.

1
2�"1/�.

1
2�"2/Cb.s/."1˚"2/: (6.4)

If "2 D 0, this is for "1 D 0 equal to q0, while for "1 D 1
2

it is equal to q
1
4C

b.s/
2 –

which is negligible compared to the former. If "2 D 1
2

, (6.4) is equal for "1 D 0 to
q
b.s/C1
2 , while for "1 D 1

2
it is equal to q

3
4 – which is negligible compared to the

former. So, independently of the value of "2, we move the contour for x1 to pass
close to �C and the integral will be dominated by the regime x1 D x."1 C �'1/ with
"1 D 0. And, the first term in (6.3) is of order q0 when "2 D 0, and of order q

b.s/C1
2

when "2 D 1
2

. Since b.s/ 2 .0; 1
2
/, we deduce that equation (6.3) is of order q0 if

"2 D 0, and of order q
b.s/C1
2 if "2 D 1

2
.

Combining everything, the effective part of yF.2/s which is relevant to extract the
leading term in (6.3) is

yF.2/s .x1; x2/ � q
y~."2/

®
yF.2/sI"2;�.'1; '2/CO.q

b.s//
¯
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with "1 D 0, the exponent

y~."2/ D

´
�
1
2

if "2 D 0;
b.s/
2

if "2 D 1
2
;

and the prefactors

yF.2/sI0;�.'1; '2/ D
ns

4 � n2s2

° Z '1

dz'1
Hb.s/;0.1 � z'1; '2/

.x�0 /
0.'2/

C
.x�0 /

0.1 � '2/

.x�0 /
0.'2/

�
2

x�0 .'1/ � x
�
0 .1 � '2/

�
ns

x�0 .'1/ � x
�
0 .'2/

±
; (6.5)

yF.2/
sI 12 ;�

.'1; '2/ D �
8b.s/ns cos�b.s/'1 sin�b.s/'2

4 � n2s2
: (6.6)

Let us now turn to zF.2/s . We compute from definition (3.4)

zF.2/s .x1; x2/ D sR.x1; x2/C s2
I
2

dy1
2i�

dy2
2i�

R.x1; y1/R.x2; y2/F.2/s .y1; y2/

D sR.x1; x2/C s2
Z x1

dzx1

Z x2

dzx2

I


dy1
2i�

dy2
2i�

A.zx1; y1/A.zx2; y2/

� F.2/s .y1; y2/C C1.x1/C C2.x2/

D sR.x1; x2/C n2s2
Z x1

dzx1

Z x2

dzx2 & 0.zx1/& 0.zx2/

� F.2/s .&.zx1/; &.zx2//dzx1dzx2 C C1.x1/C C2.x2/

D sR.x1; x2/C n2s2
� Z v.x1/

dzv1

Z v.x2/

dzv2 G.2/
s .� � zv1; � � zv2/

�
2 lnŒ&.x1/ � &.x2/�C ns lnŒx1 � &.x2/�

4 � n2s2
C zC1.x1/C zC2.x2/

�
:

The functions C1.x1/, zC1.x1/, C2.x2/ and zC2.x2/ do not depend simultaneously
on x1 and x2 and will thus disappear when we perform the contour integral against
zH .x1; x2/ as it behaves like O.x�21 x�22 / when xi !1. Given the expression (4.1)

for R, the term sR.x1; x2/ in the first line combines with the ratio in the second line,
up to an extra term which only depends on x2 and will also disappear

zF.2/s .x1; x2/ D n
2s2

Z v.x1/
Z v.x2/

dzv1 dzv2 G.2/
s .� � zv1; � � zv2/

�
2ns.ns lnŒx1 � x2�C 2 lnŒx1 � &.x2/�/

4 � n2s2

C yC1.x1/C yC2.x2/;
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where again yCi .xi / does not depend simultaneously on both x1 and x2, so that they
will disappear in the next step. Now, we can computeI


dx1
2i�

I


dx2
2i�
zH .x1; x2/ zF.2/s .x1; x2/

D n2s2
I


dx1
2i�

I


dx2
2i�
zH .x1; x2/

Z v.x1/°
dzv1

Z v.x2/

dzv2 G.2/
s .� � zv1; � � zv2/

�
2ns dzx1
4 � n2s2

� 2

zx1 � &.x2/
C

ns& 0.zx1/

&.zx1/ � &.x2/

�±
D n2s2

° I


dx1
2i�

I


dx2
2i�
zH .x1; x2/

Z v.x1/
Z v.x2/

dzv1dzv2 G.2/
s .� � zv1; � � zv2/

�
2ns

4 � n2s2

I


dx1
2i�

�
2

Z x1

dzx1 zH .zx1; &.x1// &
0.x1/

C ns

Z x1

dzx1 zH .zx1; x1/
�±
: (6.7)

The same arguments we used for yF.2/s show that the dominant contribution to the
integrals always comes from the part of the integration where xj D x.�'j / with 'j
of order 1. So, the effective part of zF.2/s which allows us to extract the dominant
contribution of (6.7) is

zF.2/s .x1; x2/ � zF.2/s � .'1; '2/CO.q
b.s//;

where xj D x."j C �'j / with "1 D "2 D 0 and

zF.2/s � D
n2s2

4 � n2s2

Z '1
Z '2

dz'1dz'2Hb.s/;0.1 � z'1; 1 � z'2/

�
2ns

4 � n2s2
.2 lnŒx�0 .'1/ � x

�
0 .1 � '2/�

C ns lnŒx�0 .1 � '1/ � x
�
0 .1 � '2/�/: (6.8)

This completes the proof of Lemma 6.3.

6.3. Fixed nesting graph

Now we can deduce the critical behavior of the generating series of maps with a fixed
nesting graph � . Recall that we denoted by V0;2.�/ the set of univalent vertices
of genus 0 carrying exactly one boundary. Let us introduce the notations V L

0;2.�/

(resp. V S
0;2.�/) for the vertices for which we keep the boundary large (resp. small).

Let k.0;2/, k.0;2/0 and k.0;2/
1=2

denote the cardinalities of V0;2.�/, V L
0;2.�/ and V S

0;2.�/,
respectively. We also denote byES

0;2.�/ the set of edges incident to a small boundary,
and by E 0.�/ the set of edges which are not in ES

0;2.�/.
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Theorem 6.4. Let xj D x."j C �'j / for j D 1; : : : ; k, and k0 and k1=2 denote the
number of "j D 0 (large boundaries) and of "j D 1

2
(small boundaries). When q ! 0,

we have for the singular part with respect to u and xi s,

FFF .g;k/
�;?;sD1.x1; : : : ; xk/ D

��
T

�k
q
~.g;k;k1=2;k

.0;2/

1=2
/

�
®
ŒFFF .g;k/

�;?;sD1��.'1; : : : ; 'k/CO.q
b
2 /
¯
;

where

~.g; k; k1=2; k
.0;2/

1=2
/ D .2g � 2C k/

�
d
b

2
� 1

�
�
k

2
C
3

4
k1=2 C

�b
2
�
1

4

�
k
.0;2/

1=2
:

And, for the singular part with respect to s, u and xi s,

FFF .g;k/
�;?;s.x1; : : : ; xk/

D

��
T

�kh Y
e2E.�/

1

4 � n2s2

i
q
~.g;k;k1=2;k

.0;2/

1=2
/C
P

e2ES
0;2
.�/

1
2 .bŒs.e/��b/ (6.9)

�

° X
� WE 0.�/!¹0;1º

h Y
e2E 0.�/

q�.e/bŒs.e/�
i�
ŒFFF .g;k/

�;?;s��;� CO
� X
e2E.�/

q
bŒs.e/�
2

��±
:

Remarkably, the result does not depend on the details of � , but only on its genus g,
and on the number of boundaries of different types. For a fixed topology .g; k/, the
graphs minimizing the number of small boundaries have the biggest contribution, and
if we also fix a configuration .k0; k1=2/, the graphs maximizing k.0;2/

1=2
contribute the

most.

Proof. We want to estimate the expression of Proposition 3.10 for FFF .g;k/
�;?;s in the

regime q ! 0. Given that the vertex weights are F ’s whose leading term according
to Theorem 5.9 has the property of receiving an extra factor q

3
4 whenever a boundary

variable xi is not close to �C at scale q
1
2 , we are in the conditions of Lemma 6.3.

We can apply the steepest descent method to approximate the integral, and we have
argued in the proof of Lemma 6.3 that the contour should be moved to pass close to �C
because the dominant contribution comes from the regime where each ye � �C 2
O.q

1
2 /, i.e., yeD x.�'e/ for 'e of order 1. Therefore, combining Theorem 5.9 for F ’s

and Lemma 6.3 for yF.2/s and zF.2/s , we arrive to

FFF .g;k/
�;?;1.x1; : : : ; xk/

D

I

Eglue.�/

Y
e2Eglue.�/

dye
2i�

Y
v2 zV .�/

F .h.v/;k.v/Cd.v//.x@.v/; ye.v//

d.v/Š

�

Y
e2 zE.�/

zF.2/sD1.yeC ; ye�/
Y

v2V0;2.�/

yF.2/sD1.yeC.v/; x@.v//
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D

Y
e2Eglue.�/

q
1
2

Y
v2 zV .�/

qŒ2h.v/�2Ck.v/Cd.v/�.d
b
2�1/�

1
2 .k.v/Cd.v//C

3
4k1=2.v/

�

Y
v2V 0

0;2

q�
1
2

Y
v2V S

0;2

q
b
2

®
ŒFFF .g;k/

�;?;1��.'1; : : : ; 'k/CO.q
b
2 /
¯

(6.10)

with

ŒFFF .g;k/
�;?;1��.'1; : : : ; 'k/

D

I
xC
Eglue.�/

Y
e2Eglue.�/

dx�0 .z'e/
2i�

Y
v2 zV .�/

F .h.v/;k.v/Cd.v//
� .'@.v/; z'e.v//

d.v/Š

�

Y
e2 zE.�/

zF.2/sD1�.z'eC ; z'e�/
Y

v2V0;2.�/

yF.2/sD1�.z'eC.v/; '@.v//:

Since we refer all the time to a fixed nesting graph � , we omit it in the notations
for simplicity. Let us now simplify the total exponent. The first Betti number of the
graph is

1 � jV j C jEj D g �
X
v2 zV

h.v/;

and we recall that jV j D j zV j C k.0;2/ and jEj D j zEj C k.0;2/. Then, we observe thatX
v2 zV

k.v/ D k � k.0;2/ and
X
v2 zV

k1=2.v/ D k1=2 � k
.0;2/

1=2
:

By counting inner half-edges we also findX
v2 zV

d.v/ D 2jEj � jEunj D 2j zEj C k
.0;2/
D jEgluej:

Moreover, we obviously have k.0;2/ D k
.0;2/
0 C k

.0;2/

1=2
. Substituting these relations

into (6.10) gives a total exponent

~ D
1

2
jEgluej C .2.g � jEjC jV j� 1/� 2j zV j C k� k.0;2/C 2jEj � k.0;2//

�
d
b

2
� 1

�
�
1

2
.k � k.0;2// �

1

2
jEgluej C

3

4
.k1=2 � k

.0;2/

1=2
/ �

1

2
k
.0;2/
0 C

b

2
k
.0;2/

1=2

D .2g � 2C k/
�
d
b

2
� 1

�
�
k

2
C
3

4
k1=2 C

�b
2
�
1

4

�
k
.0;2/

1=2
:

A similar computation for general sD .s.e//e2E.�/ using the behavior of the singular
part of yF.2/s and zF.2/s with respect to s, leads to claim (6.9) (we omit the expression of
the prefactors).
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Remark 6.5. Note that the analysis of the generating series of configurations with
a fixed nesting graph performed in this section has shown that for the gluing annuli,
which contain the inner boundaries of the arms, large lengths give effectively domi-
nant contributions. This is the reason why the only sets of edges which play a role are:
the set of edges ES

0;2 incident to one small boundary and one large boundary (either
a boundary of the map or an inner annulus), and the set of edges E 00;2 incident to two
large boundaries (either both boundaries of the map, if the map is a just cylinder; two
inner annuli for internal edges; or a boundary of the map and an inner annulus).

7. Large volume asymptotics

Recall from Theorem 5.3 the scaling of q with respect to the variable u coupled to the
volume

q �
�1 � u
q�

�c
; c D

1

1 � b
2
� db

2

with d D 1 in dense phase, d D �1 in dilute phase.

7.1. Relative amplitude of nesting graphs

We now extract from Theorem 6.4 the leading asymptotics of the generating series of
maps of given volume V , given boundary perimeters, and given nesting graph � , not
keeping track of the number of separating loops on each arm – i.e., for s.e/ D 1, in
the regime V !1, while we impose either small or large boundaries.

Theorem 7.1. Take .g; h/ on the non-generic critical line. Assume 2g � 2C k > 0.
The generating series of connected maps of volume V , of genus g, with k1=2 bound-
aries of finite perimeter Li D `i , among which k.0;2/

1=2
are carried by a genus 0 leaf

as only mark, and k0 boundaries of perimeters Li D `iV
c
2 – for fixed positive ` D

.`i /
k
iD1 – and realizing the nesting graph .�; ?/, behaves when V !1 as�

uV
kY
iD1

x
�.LiC1/
i

�
FFF .g;k/

�;?;1 �AAA .g;k/
�;?;1.`/V

Œ�1Cc..2g�2Ck/.1�d b2 /�
1
4k1=2C.

1
4�

b
2 /k

.0;2/

1=2
/�
;

where k D k0 C k1=2 is the total number of boundaries, and an expression for the
non-zero prefactor is given in (7.4).

Several remarkable conclusions can be drawn from this result. Firstly, if we keep
all boundaries large, we have

FFF .g;k/
�;?;1
�
� V �1Cc.2g�2Ck/.1�d b2 /;



Nesting statistics in the O.n/ loop model on random maps of arbitrary topologies 271

Figure 18. A typical map of the O.n/ model with small boundaries. These are most likely to
be incident to distinct long arms (containing O.lnV / separating loops). We have only drawn in
green the loops which are separating.

and the order of magnitude only depends on the global topology of � , i.e., on the
genus g and the number of boundaries k. In other words, for given g and k, all nesting
graphs have comparable probabilities to be realized.

Secondly, if we keep a certain number k1=2 > 0 of small boundaries, the nest-
ing graphs most likely to be realized when V !1 at criticality are the ones with
k
.0;2/

1=2
D k1=2, i.e., where each small boundary belongs as the only marked element

to a connected component with the topology of a cylinder on the complement of all
loops (see Figure 18). And, all nesting graphs with this property have comparable
probabilities.

For completeness, we also study the case of cylinders .g; k/ D .0; 2/ – for which
the computations already appeared in [3]. There are only two possible nesting graphs

.�1; ?/ D �
1;2; .�2; ?/ D

1
����

2:

Before conditioning on the volume and the boundary perimeters, the generating series
for the graph .�1; ?/ is F .2/.x1; x2/, while the generating series for the graph .�2; ?/
is .F.2/sD1 � F .2//.x1; x2/. We derive from Corollary 6.2 the following assertion.

Theorem 7.2. Take .g;h/ on the non-generic critical line. Fix `i positive independent
of V , and "i 2 ¹0; 12º. If "i D 0, we chooseLi D `iV

c
2 , and if "i D 1

2
, we rather choose

Li D `i . We have, when V !1,

ŒuV x
�.L1C1/
1 x

�.L2C1/
2 �FFF .0;2/

�1;?;sD0
.x1; x2/

�FFF .0;2/
�1;?;sD0

.`1; `2/V
�1� c2 .1�."1˚"2//; (7.1)

ŒuV x
�.L1C1/
1 x

�.L2C1/
2 �FFF .0;2/

�2;?;sD1
.x1; x2/

�FFF .0;2/
�2;?;sD1

.`1; `2/ V
�1�cb.1�."1˚"2// (7.2)

with a non-zero prefactor.
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The constant prefactors AAA are computed in the course of the proofs. Although
their structure is combinatorially clear – we essentially have to replace in the for-
mula of Proposition 3.10 all the factors by their effective leading asymptotics derived
throughout the previous section, and perform the extra contour integrations in zu and zx
whose effect is simply displayed in (7.4) – it is, however, a formidable task to obtain
explicit formulas (as functions of `i ) for a given nesting graph � . For us, the formula
serves as demonstration that this prefactor is non-trivial.

We remark that the formula for the exponent in Theorem 7.2 does not coincide
with the one in Theorem 7.1 taking .g; k/ D .0; 2/.

Proof. We briefly sketch the proof as the details of the saddle point analysis are essen-
tially the same as in [3, Sections 6.5 and 6.6]. Let @0.�/ denote the set of boundaries
for which we want to impose the perimeter Li D `iV

c
2 (i.e., we declare "i D 0), and

@1=2.�/ the set of boundaries for which we rather impose Li D `i (i.e., we declare
"i D

1
2

). The analysis reveals that this scaling V
c
2 for large boundaries is the one for

which a non-trivial behavior will be obtained.

Conditioning on boundary perimeters. We first study integrals of the form

	.u/ D
Y

i2@0.�/

I


x
`iV

c
2

i dxi
2i�

Y
i2@1=2.�/

I


x
`i
i dxi
2i�

�ˆ
h
uI .xi /i2@1=2.�/I

�xi � C
q
1
2

�
i2@0.�/

i
;

whereˆ is a function which has a non-zero limit when u! 1, and the convergence is
uniform when its variables belong to any compact. We also take from Corollary B.7
in appendix that

�C � C D O.q/:

We use the change of variables

xi D

´
�C C q

1
2x�0 .'i / if i 2 @0.�/;

�C C x
�
1=2
.'i / if i 2 @1=2.�/;

and deform the contour in .zxi D q�
1
2 .xi � 

�
C//i2@0.�/ so that it passes close to the cut

(see Figure 19). In the limit u! 1, the properties of the integrand on those steepest
descent contours ensure that we can use the monotone convergence theorem to find

	.u/ � q
1
2k0

Y
i2@0.�/

I
dx�0 .'i / e

x�
0
.'i /

`i

�
C

2i�

Y
i2@1=2.�/

I .x�
1=2
.'i //

`i dx�
1=2
.'i /

2i�

�ˆ
�
uI .x�1=2.'i //i2@1=2.�/I .x

�
0 .'i //i2@0.�/

�
:
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xC
0

R�

Figure 19. The contour xC .

Conditioning on volume V . Next, we would like to estimate integrals of the form

x	 D

I
du

2i� uVC1
	.u/q�

for some exponent �. We recall that q is a function of u for which Theorem 5.3 gives

q �
�1 � u
q�

�c
; u! 1;

and which is delta-analytic (at 1) by Lemma 5.4.
We perform the change of variables

u D 1 �
zu

V

and deform the contour in u to the one shown in Figure 20. Now assume

�C
1

2
k0 ¤ 0:

In the limit V !1, by the properties of the integrand on this steepest descent contour,
we can complete the integral to a contour which is again xC shown in Figure 19 and find

x	 � V �1�c.�C
1
2k0/

I
xC

�dzu ezu

2i�

�
zu

q�

�c.�C 12k0/
�

Y
i2@0.�/

I
.x�
0
/�1. xC/

dx�0 .'i / e
x�
0
.'i /

`i

�
C

2i�

�

Y
i2@1=2.�/

I
.x�
1=2

/�1./

.x�
1=2
.'i //

`i dx�
1=2
.'i /

2i�

�ˆ
�
1I .x�1=2.'i //i2@1=2.�/I .x

�
0 .'i //i2@0.�/

�
:
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10

Figure 20. The contour of integration for zu.

The integral over zu factors out and yields a Gamma function

x	 D
V �1�c.�C

1
2k0/

��Œ�c.�C 1
2
k0/�

Y
i2@0.�/

I
.x�
0
/�1. xC/

dx�0 .'i /e
x�
0
.'i /

`i

�
C

2i�

�

Y
i2@1=2.�/

I
.x�
1=2

/�1./

.x�
1=2
.'i //

`i dx�
1=2
.'i /

2i�

�ˆ
�
1I .x�1=2.'i //i2@1=2.�/I .x

�
0 .'i //i2@0.�/

�
: (7.3)

Specialization to Theorem 7.1. We obtain Theorem 7.1 for FFF .g;k/
�;?;1 with 2g�2Ck>0

by taking from the proof of Theorem 6.4 the exponent

� WD .2g � 2C k/
�
d
b

2
� 1

�
�
k

2
C
3

4
k1=2 C

�b
2
�
1

4

�
k
.0;2/

1=2

and

ˆ
�
1I .x�1=2.'i //i2@1=2.�/I .x

�
0 .'i //i2@0.�/

�
D ŒFFF .g;k/

�;?;1��.'1; : : : ; 'k/:

Since k D k0 C k1=2, we remark that

�C
1

2
k0 D .2g � 2C k/

�
d
b

2
� 1

�
C
1

4
k1=2 C

�b
2
�
1

4

�
k
.0;2/

1=2

is non-zero. The constant prefactor is thus

AAA .g;k/
�;?;1.`/ D ��

�1
h
�c
�
�C

1

2
k0

�i Y
i2@0

I
.x�
0
/�1. xC/

dx�0 .'i / e
x�
0
.'i /

`i

�
C

2i�

�

Y
i2@1=2

I
.x�
1=2

/�1./

.x�
1=2
.'i //

`i dx�
1=2
.'i /

2i�

� ŒFFF .g;k/
�;?;1��.'1; : : : ; 'k/: (7.4)
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Specialization to Theorem 7.2. We first consider FFF .0;2/
�;?;sD1. From Corollary 6.2, the

first term leads us to the previous setting with

�C
1

2
k0 D ž

.0;2/.s; "1; "2/C
1

2
k0 D

8̂̂<̂
:̂
0 if "1 D "2 D 0;
b.s/
2

if "1 ¤ "2;

b.s/ if "1 D "2 D 1
2

(7.5)

with s D 0 for .�1; ?/ and s D 1 for .�2; ?/. However, in the case of two large bound-
aries ("1 D "2 D 0), we see that this first term contains no power of q, so is regular
in u. The leading contribution in this case comes from the second term, hence corre-
sponds to an exponent

�C
1

2
k0 D b.s/ if "1 D "2 D 0: (7.6)

So, we obtain the desired result by specializing (7.3) to the exponent (7.5) corrected
by (7.6) and

ˆ
�
1I .x�1=2.'i //i2@1=2.�/I .x

�
0 .'i //i2@0.�/

�
D

´
F.2/s ��.'1; '2/ if "1 D "2 D 0;

F.2/s � .'1; '2/ otherwise
(7.7)

with again sD 0 for .�1;?/ and sD 1 for .�2;?/. If we define ŒFFF .0;2/
�;?;1��.'1; '2/ to be

the right-hand side of (7.7), the prefactors in (7.1)–(7.2) are then also given by (7.4)
with the exponents � we just saw.

7.2. Large deviation for arm lengths in a fixed nesting graph

Next, we also determine the asymptotics of the probability

P .g;k/
�
Pj�; ?; V;L

�
WD

�
uV

Q
e2E.�/ s.e/P.e/

Qk
iD1 x

�.LiC1/
i

�
FFF .g;k/

�;?;s.x1; : : : ; xk/�
uV

Qk
iD1 x

�.LiC1/
i

�
FFF .g;k/

�;?;1.x1; : : : ; xk/

that a connected map of genus g, of fixed volume V , with k boundaries of fixed
perimeters L D .Li /kiD1, fixed nesting graph .�; ?/, has a number P.e/ of separating
loops on every arm e 2 E.�/. We assume that � has at least one arm for this to make
sense. We introduce

J.p/ D sup
s2Œ0; 2n �

°
p ln.s/C arccos

�ns
2

�
� arccos

�n
2

�±
D p ln

�2
n

pp
1C p2

�
C arccot.p/ � arccos

�n
2

�
: (7.8)

This function is plotted in Figure 2 (see Section 2).
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Theorem 7.3. Take .g; h/ on the non-generic critical line. Assume 2g � 2C k > 0,
fix positive variables ` D .`i /kiD1 independent of V , and positive p D .p.e//e2E.�/
such that p.e/� lnV . We consider the regime where k0 boundaries have perimeter
Li D `iV

c
2 , k1=2 boundaries have perimeter Li D `i , and

P.e/ D
c lnVp.e/

�
�

´
1
2

if e 2 ES
0;2.�/;

1 if e 2 E 0.�/:

In the limit V !1, we have

P .g;k/ŒPj�; ?; V;L� �P.g;k/Œpj�; ?; `�
Y

e2E 0.�/

V �
c
� p.e/ ln. 2n /

Y
e2ES

0;2
.�/

V �
c
2� J Œp.e/�
p

lnV
:

We omit the expression of the prefactor.

For completeness we recall the result for .g; k/ D .0; 2/ from [3, Theorem 7.1].
Let P .0;2/ŒP jV;L1; L2� be the probability that a cylinder with boundaries of perime-
ters L1 and L2 has exactly P separating loops.

Theorem 7.4. Take .g; h/ on the non-generic critical line. Fix positive variables
.`1; `2/ independent of V , and p positive such that p� lnV . We have when V !1

P .0;2/
h
P D

c lnV
�

p
ˇ̌
V; L1 D `1; L2 D `2

i
�P.0;2/

1 .p; `1; `2/
V �

c
� J.p/

p
lnV

;

P .0;2/
h
P D

c lnV
2�

p
ˇ̌
V; L1 D `1; L2 D `2V

c
2

i
�P.0;2/

2 .p; `1; `2/
V �

c
2� J.p/

p
lnV

;

P .0;2/
h
P D

c lnV
�

p
ˇ̌
V; L1 D `1V

c
2 ; L2 D `2V

c
2

i
�P.0;2/

3 .p; `1; `2/V
� c� p ln. 2n /:

From Theorem 7.3, one concludes that, for a given nesting graph � , the arm
lengths for configurations of higher topology also behave typically like independent
random variables. Recall that the analysis of the generating series of configurations
with a fixed nesting graph showed that for the gluing annuli, which contain the inner
boundaries of the arms, large lengths give effectively dominant contributions. The
arms that correspond to an edge e incident to a small boundary have a depth of order
typically lnV , with large deviation function proportional to J.p/. This is exactly the
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same behavior as for the depth of a cylinder with at least one small boundary (see
Theorem 7.4, the first and the second cases).

All the other arms – for higher topologies, arms with both boundaries large (either
both interior, or one interior and one exterior) – have typically a finite depth, and we
only see the exponential tail .n

2
/P for the distribution of their depth. This is exactly

the same behavior as for the depth of a cylinder with two large boundaries (see Theo-
rem 7.4, the third case).

Moreover, when we consider a configuration of higher topology and force the
volume V ! 1, the infinite volume will typically concentrate in the components
corresponding to vertices in zV .�/ (i.e., vertices which are not univalent of genus 0)
and the arms that correspond to an edge incident to a vertex in V S

0;2.�/. In other words,
the arms that correspond to an edge not incident to a vertex in V S

0;2.�/ will typically
have finite volume and will contain finitely many separating loops.

The function J.p/ is universal as large deviation function for depths of cylinders
of large volume, up to some factors of 2 that are prescribed by the geometry. Focusing
around the point

popt D
n

p
4 � n2

;

where J reaches its minimum value 0, we obtain the following corollary.

Corollary 7.5. Consider the ensemble of connected maps of genus g with k bound-
aries of perimeters L, with volume V , realizing a fixed nesting graph .�; ?/. Under
the assumptions and the regime described in Theorem 7.3, the vector of random vari-
ables �P.e/ � cpopt lnV

2�
p

lnV

�
e2ES

0;2
.�/

converges in law when V !1 to the random Gaussian vector .N .0; �2//e2ES
0;2
.�/

with variances

�2 D
2nc

�.4 � n2/
3
2

:

Proof of Theorem 7.3. Our starting point is (6.9),

FFF .g;k/
�;?;s.x1; : : : ; xk/ D

h Y
e2E

1

4 � n2s2

i
q
~.g;k;k1=2;k

.0;2/

1=2
/C
P

e2ES
0;2

1
2 .bŒs.e/��b/

�

° X
� WE 0.�/!¹0;1º

h Y
e2E 0.�/

q�.e/ bŒs.e/�
i

�

�
ŒFFF .g;k/

�;?;s��;� CO
� X
e2E.�/

q
bŒs.e/�
2

��±
: (7.9)
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We denote by x	.�/s the contribution attached to � WE 0.�/! ¹0; 1º in the above sum
and get an expression of the form

J.�/ D

I Y
e2E

ds.e/
2� i s.e/P.e/C1

kY
iD1

dxi
2� i

x
Li
i

du
2� iuVC1

x	.�/s

� V �1�c.~C
1
2k0/

I Y
e2E

1

4 � n2s2
Y
e2E

ds.e/
2� i s.e/P.e/C1

�
V �c�� .s/

��Œ�c.~ C 1
2
k0 C �� .s//�

Y
i2@0.�/

I
.x�
0
/�1. xC/

dx�0 .'i / e
x�
0
.'i /

`i

�
C

2� i

�

Y
i2@1=2.�/

I
.x�
1=2

/�1./

.x�
1=2
.'i //

`i dx�
1=2
.'i /

2� i

�ˆ.�/s Œ1I .x1=2.'i //i2@1=2.�/I .x
�
0 .'i //i2@0.�/�

with

�� .s/ D
X

e2ES
0;2
.�/

1

2
.bŒs.e/� � b/C

X
e2E 0.�/

�.e/ bŒs.e/�:

It is natural to study the regime

P.e/ D
cp.e/ lnV
|.e/�

with |.e/ D

´
2; if e 2 ES

0;2.�/;

1; otherwise;

for p.e/ > 0 independent of V . If we extend the map � WE 0.�/! ¹0; 1º to a map
� WE.�/ ! ¹0; 1º by declaring �.e/ D 1 for e 2 ES

0;2.�/, the singular part of the
integrand is of the formY

e2E

s.e/�P.e/
Y

e2��1.1/

V �c
b.s.e//
|.e/

Y
e2��1.0/

1

4 � n2s.e/2

D

Y
e2��1.1/

exp.|.e/�1 lnV �p.e/Œs.e/�/
Y

e2��1.0/

s.e/�
cp
� lnV

4 � n2s.e/2

with

�p.s/ D �
cp ln s
�
� cb.s/:

We first compute the saddle point s.p/ of �p , i.e., the point such that � 0p.s.p// D 0.
We find

s.p/ D
2

n

pp
1C p2

:
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We also compute in terms of the function J introduced in (7.8)

�p.s.p// D
c.�b � J.p//

�
:

For e 2 ��1.1/, we perform the change of variables

s.e/ D sŒp.e/�C
zs.e/
p

lnV

and find by Taylor expansion of �p at order 2 around s D s.p/:

ds.e/
2� i s.e/PC1

V �
cb.s/
|.e/ �

dzs.e/
2� i s.p.e//

.lnV /�
1
2V

�p.e/.s.p.e///
|.e/

� exp
�cn2.p.e/2 C 1/2

8|.e/�p.e/
zs.e/2

�
;

which remains valid when p.e/ is allowed to depend on V such that p.e/ � ln V
and P.e/� 1. We then deform the contour in zs.e/ to a steepest descent contour iR,
and the properties of the integrand imply we can apply the monotone convergence
theorem, and computation of the Gaussian integral in zs yields when V !1

J.�/ P�
V �1�c.~C

1
2k0/

��Œ�c.~ C 1
2
k0 C �� .s� .p///�

Y
e2��1.1/

V
cb
|.e/�

cJ.p.e//
|.e/�p

2j.e/�1cp.e/.p2.e/C 1/ lnV

�

Y
e2ES

0;2

V �
b
2

Y
e2��1.0/

V �
c
� p.e/ ln. 2n /; (7.10)

where
s� .p/ D

�
.sŒp.e/�/e2��1.1/;

�2
n

�
e2��1.0/

�
:

The contour integral over s.e/ for �.e/ D 0 was easy to calculate and just produces
.n
2
/P.e/ and appears in an equivalent form in the second line of (7.10). Here we had

to separate cases for P.e/ even or odd, and check that they both give the same contri-
bution, taking into account the prefactors yW Œ0;2�

sI0;� (6.5) and zW Œ0;2�
sI� (6.8).

As we need to sum over � as in (7.9), we have to compare for e 2 E 0.�/ the factor
coming from �.e/ D 0

V �
c
� p.e/ ln. 2n /

to the factor coming from �.e/ D 1

V �c.
J.p.e//
� Cb/:

Since

c
�J.p/
�
C b

�
> ln

�2
n

�cp
�

for all p � 0;

the term with �.e/ D 0 for all e 2 E 0.�/ dominates. We conclude by dividing by the
asymptotic exponent of the numerator which has been previously obtained.
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7.3. Addendum: Generating series of maps with marked points

We now generalize Theorem 5.9 to allow marked points.

Lemma 7.6. Let k D k0 C k1=2 � 1 and g � 0 such that .g; k/ ¤ .0; 1/. Let xj D
x.1
2
C �'j / for j 2 ¹1; : : : ; k1=2º, i.e., xj remains finite and away from Œ��; 

�
C�.

Let yj D x.� j / for j 2 ¹1; : : : ; k0º, i.e., yj scales with q ! 0 such that yj � C 2
O.q

1
2 /. We have in the critical regime q ! 0

F .g;k;�k0/.x1; : : : ; xk1=2 ; y1; : : : ; yk0/

D

��
T

�k
q
ž.g;kCk0;k1=2Ck0/

®
F .g;k;�k0/
� .'1; : : : ; 'k1=2 ;  1; : : : ;  k0/CO.q

b
2 /
¯
:

This is also true for .g; k/ D .0; 1/.

The outcome is that marked points behave as small boundaries. Subsequently,
the asymptotics of the generating series FFF .g;k/

�;?;s given by Proposition 3.10 in pres-
ence of k0 marked points are the same as obtained in Theorem 6.4, provided one
replaces k1=2 with k1=2 C k0, and likewise for Theorem 7.1 concerning fixed volume
asymptotics, and Theorem 7.3 concerning fixed volume and fixed arm lengths asymp-
totics.

Proof. First assume .g; k/ ¤ .0; 1/. We proceed by recursion, starting from the base
case k0 D 0 obtained in Theorem 5.9,

F .g;k/.x; y/ D
��
T

�k
q
ž.g;k;k1=2/ˆ

h
uI .xi /

k1=2
iD1 I

�yi � �C
q
1
2

�k0
iD1

i
;

where ˆ is a function which has a uniform limit when u! 1 and its other variables
remain in a compact, and

ž.g; k; k1=2/ D .2g � 2C k/
�
d
b

2
� 1

�
�
k

2
C
3

4
k1=2:

We shall use (3.5) to decrease the value of k0. Assume the claim holds for k00 marked
points with k00 < k0. Equation (3.5) gives us

F .g;k;�k0/.x; y/ D
�
2 � 2g � k �

k1=2X
iD1

1

2
@xixi �

k0X
iD1

1

2
@yiyi

�
F .g;k;�.k0�1//.x; y/

�

I


dz
2i�

�z
2
zV0.z/ � zV.z/

�
F .g;kC1;�.k0�1//.z; x; y/ (7.11)

with

zV0.x/ D V0.x/ �
I


A.x; z/F.z/ D V0.x/C n& 0.x/F.&.x// �
nu& 00.x/

2& 0.x/
:
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We can substitute in this expression the function G introduced in (4.8),

zV0.x/ D V0.x/ � n
G.� � v/
x0.v/

C
n.2& 0.x/V0.&.x//C nV0.x//

4 � n2
�
nu& 00.x/

& 0.x/
:

The critical behavior of G.v/ when v D "C �w with " 2 ¹0; 1
2
º, and q D ei�� ! 0 is

obtained from substituting its expression from Proposition 4.1, using the asymptotics
of the function ‡b in A.2, and the identities (D.1)–(D.2). The result takes the form

G.� � v/ D q.1�2"/.1�d b2 /
®
zG�" .'/CO.q

b
2 /
¯
:

Besides, the induction hypothesis tells us that the order of magnitude of

F .g;kC1;�.k0�1//.x.v/; x; y/

receives an extra factor of q
3
4 when v D 1

2
C �' with ' in a compact. As b 2

.0; 1
2
/, in any case we have 3

4
< 1 � db

2
, and therefore the contribution of the vicin-

ity (at scale q
1
2 ) of �C in the contour integral over  in the second line of (7.11)

remains negligible compared to the contribution of the bulk of the contour (given by
the regime " D 1

2
). And, by the induction hypothesis, this contribution is of order

q
ž.g;.kCk0�1/C1;.k1=2Ck0�1/C1/, where the C1 come from the variable z 2  . On the

other hand, the first line in (7.11) has a contribution of order q ž.g;kCk
0�1;k1=2Ck

0�1/.
Since

ž.g; k C k0 � 1; k1=2 C k0 � 1/ � ž.g; k C k0; k1=2 C k0/ D
1

2
� d

b

2
> 0;

the first line is always negligible compared to the second line, and this gives the claim
for k0 marked points. We conclude for all .g; k/ ¤ .0; 1/ by induction.

Now consider .g; k/ D .0; 1/. For k0 D 1, we have from (3.3)

F
�
.x/ D

1p
.x � C/.x � �/

:

Therefore, with x D x.�'/ D �C C q
1
2x�0 .'/ in the critical regime

F
�
.x/ � q�

1
4F

�

�.'/;

whose exponent agrees with ž.g; k C k0 D 2; k1=2 C k0 D 1/. On the other hand, for
x D x.1

2
C �'/ in the critical regime, we have

F
�
.x/ D

1p
.x � �C/.x � 

�
�/
C q

1
2 zF

�

�.'/CO.q/

coming from the behavior of C when q ! 0 as given by Corollary B.5. This expo-
nent 1

2
agrees with ž.g D 0; k C k0 D 2; k1=2 C k

0 D 2/. With these two cases as
initial conditions and the previous results, we can repeat the previous steps to show
from (7.11) that the claim holds for .g; k/ D .0; 1/ for any k0 > 0.
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A. The special function ‡b

Let � be a complex number in the upper-half plane. The Jacobi theta function is the
entire function of v 2 C defined by

#1.vj�/ D �
X
m2Z

ei��.mC 12 /
2Ci�.wC 12 /.2mC1/:

Its main properties are

#1.�vj�/ D #1.v C 1j�/ D �#1.vj�/; #1.v C � j�/ D �e
�2i�.vC �2 /#1.vj�/

and the effect of the modular transformation

#1.vj�/ D
e�

i�v2
�

p
�i�

#1

�v
�

ˇ̌̌
�
1

�

�
: (A.1)

Definition A.1. We define ‡b.v/ as the unique meromorphic function with a simple
pole at v D 0 with residue 1, and the pseudo-periodicity properties,

‡b.v C 1/ D ‡b.v/; ‡b.v C �/ D e
i�b‡b.v/:

We have several expressions,

‡b.v/ D
X
m2Z

e�i�bm cotan�.v Cm�/ D
# 01.0j�/

#1.�
b
2
j�/

#1.v �
b
2
j�/

#1.vj�/

D
e

i�bv
�

iT
# 01.0j�

1
�
/

#1.�
b
2�
j�

1
�
/

#1.
v� b2
�
j�

1
�
/

#1.
v
�
j�

1
�
/
:

We have the expansion

‡b.w/ D
1

w
C

X
j�0

�b;jw; w ! 0 (A.2)

with

�b;1 D
1

2

# 001 .
b
2
j�/

#1.
b
2
j�/
�
1

6

# 0001 .0j�/

# 01.0j�/

D
1

.iT /2

�1
2

# 001 .
bz�
2
jz�/

#1.
bz�
2
jz�/
�
1

6

# 0001 .0jz�/

# 01.0jz�/
C i�b

# 01.
bz�
2
jz�/

#1.
bz�
2
jz�/
�
�2b2

2

�
; (A.3)

where z� D �1
�

and � D iT . The value of the constant term in (A.2) is irrelevant for
our purposes. The expressions involving z� or

q D ei�z�
D e�

�
T

are convenient to study the regime T ! 0, i.e., q ! 0.
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Lemma A.2. Let v D "C �w. We have, for b 2 .0; 1/,

‡b.v/ D
2�q"b

T .1 � qb/
�

8̂̂<̂
:̂
‡�
b;0
.w/ � qb‡�

bC2;0
.w/CO.q2�b/ if " D 0;

‡�
b;1=2

.w/ � .q1�b � q/‡�
b�2;1=2

.w/

C q‡�
bC2;1=2

.w/CO.q1Cb/ if " D 1
2
:

The errors are uniform for w in any compact independent of � ! 0, stable under
differentiation, and the expressions for the limit functions are

‡�b;0.w/ D
ei�.b�1/w

2i sin.�w/
; ‡�b;1=2.w/ D �e

i�bw :

We also have

�b;1 D
��
T

�2°1
3
C b C

b2

2
CO.qb/

±
:

B. The parametrization x $ v

Consider given values of ˙ and &.˙/ such that

� < C < &.C/ < &.�/: (B.1)

We set

v D iC
Z x

&.C/

dyp
.y � &.�//.y � &.C//.y � C/.y � �/

: (B.2)

The normalizing constant is chosen such that, for x moving from the origin &.C/
to &.�/ with a small negative imaginary part, v is moving from 0 to 1

2
. When x

moves on the real axis from &.C/ to C, v moves from 0 to a purely imaginary value
denoted by � D iT . Then, the function v 7! x.v/ has the properties

x.v C 2�/ D x.v C 1/ D x.�v/ D x.v/; &.x.v// D x.v � �/;

and is depicted in Figure 7. The function x0.v/ has zeroes when v 2 1
2
ZC �Z, and

double poles at v D v1 C ZC 2�Z. From (B.2), paying attention to the determina-
tion of the square root at infinity obtained by analytic continuation, we can read, in
particular,

x0.v/ �
iC

.v � v1/2
; v ! v1:

From (B.1), we know that v1 D 1
2
C �w1, where w1 2 .0; 1/ is determined as

a function of ˙ and &.˙/.
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There is an alternative expression for (B.2) in terms of Jacobi functions,

v D
2iC arcsn�1Œ

q
&.C/��
&.�/��

x�&.C/

x�&.�/
I k�p

.&.C/ � �/.&.�/ � C/

with

k D

s
.&.�/ � �/.&.C/ � C/

.&.�/ � C/.&.C/ � �/
:

By specialization at x D � and x D &.�/, we deduce the expressions

C D

p
.&.C/ � �/.&.�/ � C/

4K 0.k/
; (B.3)

T D
K.k/

2K 0.k/
; (B.4)

in terms of the complete elliptic integrals. By matching poles and zeroes, we can infer
an expression for x.v/ � C in terms of Jacobi theta functions,

x.v/ � C D � iC
# 01.0j2�/#1.2v1j2�/

#1.v1 � � j2�/#1.v1 C � j2�/

�
#1.v � � j2�/#1.v C � j2�/

#1.v � v1j2�/#1.v C v1j2�/
: (B.5)

From (B.2), one can derive the expansion of x.v/ when v ! v1.

Lemma B.1. When v ! v1, we have the expansion

x.v/ D
�iC
v � v1

C
E1

4
C

i
C

3E21 � 8E2

48
.v � v1/

C
�E31 C 4E1E2 � 8E3

64C 2
.v � v1/

2
CO.v � v1/

3;

where we introduced the symmetric polynomials in the endpoints

E1 D � C C C &.C/C &.�/;

E2 D �¹C C &.C/C &.�/º C C¹&.C/C &.�/º C &.C/&.�/;

E3 D �C&.C/C �C&.�/C �&.�/&.C/C C&.C/&.�/:

More generally, the coefficient of .v � v1/k in this expansion is a homogeneous
symmetric polynomial of degree .k C 1/ with respect to the endpoints, with rational
coefficients up to an overall factor .iC/�k .
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In the study of non-generic critical points, we want to take the limit where C
and &.C/ collide to the fixed point of the involution,

�C D
1

.˛ C 1/h
;

while � ! �� remains distinct from &.��/. This implies T ! 0, or equivalently
k ! 0. This limit is easily studied using the modular transformation (A.1) in (B.5),
or the properties of the elliptic integrals. If we set

q D e�
�
T ;

we arrive to the following.

Lemma B.2. We have

q D
�k
4

�4®
1CO.k2/

¯
; w1 D w

�
1

®
1CO.q

1
2 /
¯
:

We can then derive the critical behavior of the parametrization x.v/ in the two
regimes of interest.

Lemma B.3. Let v D "C �w for " 2 ¹0; 1
2
º. We have

x.v/ � C D q
1
2�"

®
x�" .w/CO.q

1
2 /
¯
:

The error is uniform for w in any compact independent of � ! 0, and this is stable
under differentiation with respect to v. It is actually an asymptotic series in q

1
2 . The

limit functions are

x�0 .w/ D 8
q
.&.��/ � 

�
C/.

�
C � 

�
�/ sin.�w�1/ cos2

��w
2

�
;

x�1=2.w/ D
q
.&.��/ � 

�
C/.

�
C � 

�
�/

sin.�w�1/
cos.�w/ � cos.�w�1/

:

If we specialize the second equation to v D 1
2
C � , use expression (4.2) of &.x/

and perform elementary trigonometric manipulations, we find the following.

Corollary B.4. We have

cos.�w�1/ D
1 � ˛

1C ˛
�
1 � h.1C ˛/��
1C h.1 � ˛/��

:

We may consider w�1 as a parameter for the non-generic critical line. Special-
izing again Lemma B.3 to v D " C � and using Corollary B.4 yields the following
result.
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Corollary B.5. There exists a constant �1 such that

2h.�C � C/ D
16 cos.�w�1/
.1 � ˛2/

q
1
2 CO.q/;

2h.�� � �/ D �1q
1
2 CO.q/;

and

E1 D
1 � ˛ sin2.�w�1/

.1 � ˛2/h sin2.�w�1/
C

2�1 cos.�w�1/
h.1 � cos.�w�1//2

q
1
2 CO.q/;

E2 D
2..3˛2 � 1/ sin2.�w�1/ � 2.3˛ � 2//

.˛2 � 1/2h2 sin2.�w�1/
C

2�1.3˛ � 2/

h2.1 � ˛2/.1 � cos.�w�1//2
q
1
2

CO.q/;

E3 D
4.˛2 sin2.�w�1/ � ˛.2C cos2.�w�1/C 1//

.1 � ˛/2.1C ˛/3 sin2.�w�1/h3
CO.q

1
2 /:

The first four lines are used in [3] to describe the phase diagram (reviewed here
in Section 5.1) and the critical exponents of the model. Straightforward computations
with (B.3)–(B.4) yield the following.

Corollary B.6. We have

�C

T
D

q
.&.�/ � 

�
C/.

�
C � �/CO.q/

D
2 cot.�w�1/
.1 � ˛2/h

C
.1C cos.�w�1//�1

2.1 � cos.�w�1// sin.�w�1/
q
1
2 CO.q/:

There are some simplifications in absence of bending energy, i.e., ˛ D 1. We then
have w�1 D

1
2

that is in agreement with Corollary B.4. The non-generic critical line
is then parametrized by � D 1� 2h��, which is related to the former parametrization
by letting ˛ ! 1 and w�1 !

1
2

in such a way that�1
2
� w�1

�
�
.1 � ˛/

2�
�:

Corollary B.5 specializes to the following.

Corollary B.7. For ˛ D 1, we have

2h.�C � C/ D O.q/; E1 D
2

h
CO.q/; E2 D

6 � �2

4h2
�
��1

2h2
q
1
2 CO.q/;

E3 D
2 � �2

4h3
CO.q

1
2 /;

�C

T
D

�

2h
C
�1

2h
q
1
2 CO.q/:

The fact that &.x/D 1
h
� x and �CD

1
2h

gives the exact relationE1D 2
h

, in agree-
ment with the second equality.
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C. The coefficients zgk

In the loop model with bending energy where all faces are triangles, the parameters
are: g (resp. h) the weight per face not visited (resp. visited) by a loop, ˛ the bending
energy, and n the weight per loop. We can compute zgk from their definition (4.9) if we
insert the expansion of Lemma B.1. We recall that C is the constant in (B.2), and E’s
are symmetric polynomials in the endpoints defined in Lemma B.1. If we introduce

zgk D .iC/k ygk;

we find

yg3 D
2g

4 � n2
; yg2 D

2 � gE1

4 � n2
; yg1 D

g.3E21 � 4E2/ � 6E1

12.4 � n2/
; yg0 D �

2u

2C n
:

We remark that yg3 and yg0 depend on the parameters of the model in a very simple
way, whereas yg1 and yg2 have a non-trivial behavior in the non-generic critical regime,
which can be deduced up to O.q/ from Corollary B.5, either in terms of the parame-
ter w�1, or the parameter � if ˛ D 1.

Corollary C.1. We have

yg2 D
1

4 � n2

h
1C

2g

h

�
˛ �

1

sin2.�w�1/

�i
�
g

h

�1 cos.�w�1/
.1 � cos.�w�1//2.4 � n2/

q
1
2

CO.q/;

yg1 D
2gŒ.3˛2 C 1/ sin4.�w�1/C 2.3˛ � 2/ sin2.�w�1/C 6�

3.1 � ˛2/2h2.4 � n2/ sin4.�w�1/

C
3h sin2.�w�1/.1 � ˛

2/.˛ sin2.�w�1/C 1/
3.1 � ˛2/2h2.4 � n2/ sin4.�w�1/

C �1 cos.w/

�
¹2gŒ4 � 3˛ sin2.�w�1/C 2 cos2.�w�1/� � 3h sin2.�w�1/.1 � ˛

2/º

.1 � cos.�w�1//2 sin2.�w�1/.1 � ˛2/h2.4 � n2/
q
1
2

CO.q/:

There are some simplifications for ˛ D 1. Owing to the exact relation E1 D 2
h

,
only yg1 has a non-trivial dependence in the non-critical regime.

Corollary C.2. For ˛ D 1, we have

yg2 D
2

4 � n2

�
1 �

g

h

�
;

yg1 D
1

h.4 � n2/

�
�1C

g

h
.�2 C 6/

�
C

g��1

h2.4 � n2/
q
1
2 CO.q/:
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D. Determination of the endpoints and phase diagram

In this section, we recall the elements leading to the proofs of the theorems of Sec-
tion 5.1, see [3] for more details. The equations �"G�.0/ D 0 for " 2 ¹0; 1

2
º deter-

mine ˙ in terms of the weights of the model. We compute from Proposition 4.1 and
the behavior of ‡b.�' C 1

2
/ given in Lemma A.2,

DYb;0.�w1/ � q
1�bDYb�2;0.�w1/CO.q/ D 0; (D.1)

DYb;1=2.�w1/ � q
bY

.k/

bC2;1=2
.�w1/CO.q/ D 0; (D.2)

where

Yb;0.w/ D cos.bw/; Yb;1=2.w/ D
sinŒ.1 � b/w�

sinw
;

D D

3X
lD0

.�1/l ygl

lŠ

��C
T

�l
@l�w1 :

(D.3)

Exactly at criticality, we must have u D 1 and q D 0, thus using Corollary B.6,

�
2

2C n
C

3X
kD1

.�1/k yg�
k

kŠ

�2cot.�w�1/
.1 � ˛2/h

�k Y .k/
b;"
.�w�1/

Yb;".�w�1/
D 0; " 2

°
0;
1

2

±
:

We note that the critical values yg�
k

obtained in Section C are such that (D.1)–(D.2) give
a system of two linear equations determining g

h
and h2 in terms of the parameter w�1.

For ˛ D 1, we rather use � as parameter, and the solution is

g

h
D

4.�b
p
2C n �

p
2 � n/

�2.b2 � 1/
p
2 � nC 4�b

p
2C n � 2

p
2 � n

; (D.4)

h2 D
�2b

24
p
4 � n2

�2 b.1 � b2/
p
2C n � 4�

p
2 � nC 6b

p
2C n

��2.1 � b2/
p
2 � nC 4�b

p
2C n � 2

p
2 � n

: (D.5)

Since g
h

and h2 must be nonnegative, we must have � 2 Œ�0min; �max� with

�0min D
2
p
1 � b2

p
2 � n �

p
2
p
.10C n/b2 � 4C 2n

b
p
1 � b2

p
2 � n

; (D.6)

�max D
1

b

r
2 � n

2C n
: (D.7)

However, we will see later that the non-generic critical line only exists until some
value �min > �

0
min, so (D.6) will become irrelevant. For ˛ ¤ 1, see [3, Appendix D].

Now, let us examine the approach of criticality. We fix .g; h/ on the non-generic
critical line for u D 1, and we now study the behavior when u ¤ 1 but u! 1 of the
endpoints ˙. In particular, since the behavior of the elliptic functions is conveniently
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expressed in this regime in terms of q D e�
�
T , our first task is to relate .1 � u/ to

q ! 0. For this purpose, we look at (D.1), and note that u only appears in yg0. There
could be a term of order q

1
2 stemming from near-criticality corrections to w1, ygk

and �C
T

, but computation reveals that it is absent. Therefore, we obtain

1 � u D
nC 2

2

� 3X
lD0

.�1/l yg�
l

lŠ

�2 cot.�w�1/
.1 � ˛2/h

�l Y .l/
b�2;0

.�w�1/

Yb;0.�w�1/

�
q1�b CO.q/;

where
yg�0 D �

2

2C n

and .yg�
k
/k�1 should be replaced by their values in terms of .g;h;w�1/ from Section C,

and .g; h/ by their parametrization (D.4)–(D.5) on the critical line.
We examine the case ˛ D 1. Using the parametrization (D.4)–(D.5), the resulting

formula is
1 � u D q� q

1�b
C .q�;1 C c

0�1/q C o.q/ (D.8)

with

q� D
12

b

�2.1 � b/2
p
2C nC 2�.1 � b/

p
2 � n � 2

p
2C n

��2b.1 � b2/
p
2C nC 4�.1 � b2/

p
2 � n � 6b

p
2C n

;

q�;1 D
24

b

��2.b2 C 1/
p
2C nC 2�b

p
2 � nC 2

p
2C n

��2b.1 � b2/
p
2C nC 4�.1 � b2/

p
2 � n � 6b

p
2C n

:

The value of c0 is irrelevant because we will soon show that �1 D 0. As .1� u/ should
be nonnegative for q > 0, we must have q� � 0 that demands � 2 Œ�min; �max� with

�min D

p
6C n �

p
2 � n

.1 � b/
p
2C n

: (D.9)

We observe that this lower bound is larger than �0min given by (D.6) for any n 2 Œ0; 2�,
therefore, the non-generic critical line can only exist in the range � 2 Œ�min; �max� pro-
vided by (D.9)–(D.7). These necessary conditions were also obtained in [5] – where
the lower bound arose from the constraint of positivity of the spectral density associ-
ated with the generating series of disks F.x/ – and it was checked that these conditions
are sufficient.

We now turn to the second equation (D.2). We have checked that the term in qb

vanishes, as we expect by consistency with (D.8). Then, the term of order q
1
2 is pro-

portional to �1, therefore, we must have, in both dense and dilute phase,

�1 D 0;

which means that � � �� 2 O.q/.
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We see that for � 2 .�min; �max�,

q � q�.1 � u/
1
1�b

for some constant q� > 0. This corresponds, by definition, to the dense phase. For
� D �min (i.e., the dilute phase), we have q� D 0, and (D.8) specializes to

1 � u D
24

b.1 � b/.2 � b/
q C o.q/:

For general ˛ not too large (see the statement of Theorem 5.2), the result is quali-
tatively the same, only the non-zero constant prefactor differs – see [3, Appendix D].

E. Proof of Lemma 5.5

The goal in this appendix is to obtain the critical behavior of the building blocks.
We give expressions valid for both universality classes using

d D

´
1; dense;

�1; dilute:

From expressions (4.12), (4.13) and the behavior of the special function ‡b from
Lemma A.2, we find the following assertion.

Lemma E.1. We have in the regime T ! 0 that

B";l."0 C �'/ D
2.�1/lC1
p
4 � n2

��
T

�2lC2
qb."˚"

0/
®
B
�;.2lC1/

"˚"0;b
.�'/CO.qb/

¯
;

B";l."
0
C �'/ D .�1/lC1

��
T

�2lC2
q
1
2 ."˚"

0/
®
B
�;.2lC1/

"˚"0;1=2
.�'/CO.q

1
2 /
¯
;

where

B�0;b.'/ D
sin.1 � b/'

sin'
; B�1=2;b.'/ D 2 cos b':

The error is uniform for ' in any compact, and stable by differentiation.

We next focus on the denominator of the recursion kernel.

Lemma E.2. We have in the regime T ! 0

.�"G/.�'/ D
��
T

�
q.1�d b2 /.1�2"/

®
G�" .'/CO.q

b/
¯
:

We have

G�0 .'/ D

´
�D�

b�2
sin�' sin�.1 � b/'; in dense phase;

D�
bC2

sin�' sin�.1C b/'; in dilute phase
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with D�
b

given in (E.3) below. In each phase, G�0 .'/ ¤ 0. We have

G�1=2.'/ D i
p

4 � n2D�
�
2

sin�.1 � b/w�1
sin�w�1

�
sin�.1 � b/.w�1 � '/

sin�.w�1 � '/

�
sin�.1 � b/.w�1 C '/

sin�.w�1 C '/

�
;

where D� is a differential operator given in (E.2) below.

Proof. From Proposition 4.1 and the behavior of ‡b.�' C 1
2
/ given in Lemma A.2,

we repeat in a finer way the computation of the beginning of Section 5.1:

.�0G/.�'/ D
p

4 � n2
8i�
T

q
b
2

1 � qb

®
� cos�b'DYb;0.�w1/

C q1�b cos�.b � 2/'DYb�2;0.�w1/

� q.cos�.b � 2/'DYb�2;0.�w1/

C cos�.b C 2/'DYbC2;0.�w1//CO.q
1Cb/

¯
; (E.1)

where Yb;0 and D were introduced in (D.3). One of the exact condition determining
the endpoint was �0G.0/ D 0, i.e.,

DYb;0.�w1/ D q
1�bDYb�2;0.�w1/ � qD.Yb�2;0 C YbC2;0/.�w1/

CO.q1Cb/ D 0;

which we can substitute into (E.1) to obtain

.�0G/.�'/ D
p

4 � n2
16i�
T

q
b
2

1 � qb

®
q1�b sin�' sin�.1 � b/'DYb�2;0.�w1/

C q sin�'.sin�.1 � b/'DYb�2;0.�w1/

C sin�.1C b/'DYbC2;0.�w1//CO.q
1Cb/

¯
:

The dense phase was characterized by

D�Yb�2;0.�w
�
1/ ¤ 0; D� D

X
l�0

.�1/l yg�
l

lŠ
@l
�w�1

: (E.2)

Therefore, the first term, of order q1�b , is indeed the leading term. The dilute phase
is characterized by D�Yb�2.�w

�
1/ D 0, and then one can check that

D�YbC2.�w
�
1/ ¤ 0:
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So, in the dilute phase the leading term is of order O.q/. This gives the announced
results with

D�b D 16i
p

4 � n2 D�Yb.�w
�
1/: (E.3)

For .�1=2G/.�'/, we easily arrive to the result using the behavior of ‡b.�'/ from
Lemma A.2, and exploiting the freedom to subtract �1=2G.0/ D 0.

Corollary E.3. We have when T ! 0, for r D 1; 2 and " 2 ¹0; 1
2
º,

y";r D
��
T

�2rC1
q.1�2"/.1�d b2 /

®
y�";r CO.q

b/
¯
;

with y�";r ¤ 0 computable from Lemma E.2, and

y�0;2

y�0;1
D �2C 2b � b2:

Inserting the previous results into the expressions (4.24)–(4.25) for the initial con-
ditions, we find the following.

Corollary E.4. When T ! 0, we have

C.0;3/
�
0
"
0
"
0
"

�
D

��
T

��3
q.1�2"/.d

b
2�1/

®
C.0;3/�

�
0
"
0
"
0
"

�
CO.qb/

¯
;

C.1;1/
�
0
"

�
D

��
T

��1
q.1�2"/.d

b
2�1/

®
C.1;1/�

�
0
"

�
CO.qb/

¯
;

C.1;1/
�
1
"

�
D

��
T

��3
q.1�2"/.d

b
2�1/

®
C.1;1/�

�
1
"

�
CO.qb/

¯
;

and likewise for the C ’s, with

C.0;3/�

�
0
"
0
"
0
"

�
D �

2

y�";1
; C .0;3/�

�
0
"
0
"
0
"

�
D �

2

y�";1
;

C.1;1/�

�
0
0

�
D
6C 26b C 11b2

24y�0;1
; C .1;1/�

�
0
0

�
D
29C 26b C 11b2

24y�0;1
;

C.1;1/�

�
0
1
2

�
D

y�
1=2;2

24.y�
1=2;1

/2
C
2C 6b C 3b2

6y�
1=2;1

;

C .1;1/�

�
0
1
2

�
D

y�
1=2;2

24.y�
1=2;1

/2
C

23

24y�
1=2;1

;

C.1;1/�

�
1
"

�
D �

1

24y�";1
; C .1;1/�

�
1
"

�
D �

1

24y�";1
:

From Corollary E.3, we can then deduce the critical behavior of K’s and zK’s.
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Corollary E.5. For "; �; � 0 2 ¹0; 1
2
º, we denote

f ."; �; � 0jB/ WD BŒ."˚ �/C ."˚ � 0/�C
�
d
b

2
� 1

�
.1 � 2"/:

When T ! 0, we have

K
�
l
"
m
�
m0

� 0

�
D

��
T

�2.mCm0�l/C1
qf .";�;�

0jb/
®
K�
�
l
"
m
�
m0

� 0

�
CO.qb/

¯
;

zK
�
l
"
l 0

"
m
�

�
D

��
T

�2.m�l�l 0/�1
qf .";";� jb/

®
zK�
�
l
"
l 0

"
m
�

�
CO.qb/

¯
;

and

K
�
l
"
m
�
m0

� 0

�
D

��
T

�2.mCm0�l/C1
qf .";�;�

0j 12 /
®
K�
�
l
"
m
�
m0

� 0

�
CO.qb/

¯
;

zK
�
l
"
l 0

"
m
�

�
D

��
T

�2.m�l�l 0/�1
qf .";";� j

1
2 /
®
zK�
�
l
"
l 0

"
m
�

�
CO.qb/

¯
with

K�
�
l
"
m
�
m0

� 0

�
D
4.�1/lCmCm

0

4 � n2
Res'D0

d' '2lC1

.2l C 1/ŠG�" .'/
B
�;.2mC1/
"˚� Œ�.' C 1/�

� B
�;.2m0C1/
"˚� 0 Œ�.' � 1/�;

zK�
�
l
"
l 0

"
m
�

�
D
2.�1/mClCl

0C1

p
4 � n2

Res'D0
d' '2.lCl

0/C1

.2l C 1/Š.2l 0/Š G�" .'/
B
�;.2mC1/
"˚� Œ�.' C 1/�;

and likewise for the K� and zK�.

Proof. This is a direct computation from Lemmas E.1 and E.2. We note that for zK
(resp. zK), we find an exponent q zf .";� jB/, with

zf ."; � jB/ D B."˚ �/C
�
d
b

2
� 1

�
.1 � 2"/

with B D b (resp. B D 1
2

). But since "˚ " D 0, this is also equal to f ."; "; � jB/.

We also remark that the order of magnitude of C.0;3/Œ0" 0" 0" � and C.1;1/Œl"�, and of
C .0;3/Œ0"

0
"
0
" � and C .1;1/Œl"�, is qf .";";"jb/ D qf .";";"j

1
2 /. Therefore, for a given graph G

and coloring � of its edges appearing in the sum of Proposition 4.11, and any vertex
v 2 V.G /, the factor associated to v – either K, zK, C.0;3/ or C.1;1/ – is of order of
magnitude qfv.b/ with

fv.b/ D f .�.e0v /; �.e
1
v /; �.e

2
v /jb/:

Similarly, any factor K , zK , C .0;3/ or C .1;1/ associated to a vertex v 2 V.G / scales
like qfv.

1
2 /.
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